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1 Objectives

Given data samples, inferring the rules underlying behind the data is a major challenge
in the area of machine learning. Such a learning method can be applied to solving a wide
range of real-world problems such as robot control, bioinformatics, brain signal analysis,
computer vision, speech recognition, and natural language processing. For this reason, a
great deal of effort has been made recently to develop various machine learning algorithms.
Our goal is to propose a general machine learning framework that can be employed for
improving the state-of-the-art performance in these application domains.

More specifically, we establish a novel approach that accommodates various challeng-
ing machine learning tasks such as non-stationarity adaptation, outlier detection, dimen-
sionality reduction, and conditional probability estimation. Our key idea is to directly
estimate the ratio of two probability densities without going through density estimation,
which is a novel paradigm in the machine learning community. Under the common con-
cept of direct density-ratio estimation, we develop tailored machine learning algorithms
for each task and show their usefulness in various application domains.

2 Status of effort

My project consists of four layers: (A) theory of density ratio estimation, (B) algorithms
of density ratio estimation, (C) machine learning algorithms based on density ratio esti-
mation, and (D) real-world application of density ratio estimation.

For the layer (B), we developed a new method of direct density-ratio estimation that is
significantly more accurate than naively estimating the ratio via density estimation. We
also developed density-ratio estimation algorithms that can handle correlated and rank-
deficient data. We further proposed to combine density ratio estimation with dimension-
ality reduction, which improves the estimation accuracy in high-dimensional problems.

For the layer (A), we elucidated statistical properties of density ratio estimators for
parametric and non-parametric cases. Such results are expected to contribute to further
improving the estimation accuracy and computational efficiency of density ratio estima-
tors.

For the layer (C), we employed our density-ratio estimation methods for designing
practical machine learning algorithms including non-stationarity adaptation, outlier de-
tection, supervised dimensionality reduction, causal direction inference, independent com-
ponent analysis, conditional density estimation, probabilistic classification, and multi-task
classification.

Finally, for the layer (D), we demonstrated the usefulness of the above machine learn-
ing algorithms in several real-world applications such as brain-computer interface, robot
control, speech and audio recognition, image processing, and sensor data analysis.
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3 Abstract

The basis of our project is a method to accurately estimate the ratio of probability densi-
ties. First, we developed a new method of density-ratio estimation that can avoid density
estimation (publication 1). This method gives the solution analytically just by solving a
system of linear equations, so it can be applied to large-scale problems. Furthermore, we
developed methods of direct density-ratio estimation suitable for highly-correlated data
(publication 2) and rank-deficient data (publication 3). We also proposed two methods for
handling high-dimensional data: The first method is heuristic but computationally effi-
cient (publication 4), and the other method is theoretically justifiable but computationally
expensive (publication 5). We have also theoretically investigated statistical properties of
density ratio estimators for parametric models (publication 6) and non-parametric models
(publication 7).

Then we designed practical machine learning algorithms based on density ratio estima-
tors. This includes outlier detection (publication 8) supervised dimensionality reduction
(publication 9), causal direction inference (publication 10), independent component anal-
ysis (publication 11), conditional density estimation (publication 12), probabilistic classi-
fication (publication 13), and its multi-task version (publication 14). Through extensive
experiments, these methods were shown to compare favorably with existing approaches
in terms of accuracy and/or computational efficiency.

We also explored various real-world applications using the density ratio approaches.
This includes speaker identification (publication 15), audio tagging (publication 16), non-
stationarity adaptation in brain-computer interface (publication 17), efficient sample reuse
in robot control (publications 18 and 19), active exploration in robot control (publication
20), feature selection in robot control (publication 21), adaptation of lighting-condition
change in face-based age recognition (publication 22), detection of regions of interest in
images (publication 23), and multi-user adaptation in accelerometer-based human activity
recognition (publication 24).

Finally, the framework of density ratio estimation was published as review articles
(publication 25 and 26). We will also publish a book from the MIT Press on our density-
ratio-based non-stationarity adaptation approach (publication 27; approx. 300 pages, the
final version was already sent to the publisher). Furthermore, the entire framework of the
density ratio estimation will be published as a book from the Cambridge University Press
(publication 28; beyond 400 pages, 90% of the material was already prepared).

4 Personnel Supported

The research activity of the following people was supported.

• Masashi Sugiyama (Tokyo Institute of Technology),

• Hirotaka Hachiya (Tokyo Institute of Technology),

• Makoto Yamada (Tokyo Institute of Technology),
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• Gang Niu (Tokyo Institute of Technology),

• Takayuki Akiyama (Tokyo Institute of Technology),

• Pui-Ling Chui (Tokyo Institute of Technology).

5 Publications

During the 24 months, the following papers were published. The papers indicated by
‘*’ were attached to this report, and all the publications are available from http://

sugiyama-www.cs.titech.ac.jp/∼sugi/publications.html.

1. * Kanamori, T., Hido, S., & Sugiyama, M. A least-squares approach to direct im-
portance estimation. Journal of Machine Learning Research, vol.10 (Jul.), pp.1391–
1445, 2009.

2. Yamada, M. & Sugiyama, M. Direct importance estimation with Gaussian mix-
ture models. IEICE Transactions on Information and Systems, vol.E92-D, no.10,
pp.2159–2162, 2009.

3. Yamada, M., Sugiyama, M., Wichern, G., & Simm, J. Direct importance estimation
with a mixture of probabilistic principal component analyzers. IEICE Transactions
on Information and Systems, vol.E93-D, no.10, pp.2846–2849, 2010.

4. Sugiyama, M., Kawanabe, M., & Chui, P. L. Dimensionality reduction for density
ratio estimation in high-dimensional spaces. Neural Networks, vol.23, no.1, pp.44–
59, 2010.

5. * Sugiyama, M., Yamada, M., von Bun̈au, P., Suzuki, T., Kanamori, T., & Kawan-
abe, M. Direct density-ratio estimation with dimensionality reduction via least-
squares hetero-distributional subspace search. Neural Networks, vol.24, no.2, pp.183–
198, 2011.

6. * Kanamori, T., Suzuki, T., & Sugiyama, M. Theoretical analysis of density ratio
estimation. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, vol.E93-A, no.4, pp.787–798, 2010.

7. Suzuki, T., Sugiyama, M., & Tanaka, T. Mutual information approximation via
maximum likelihood estimation of density ratio. In Proceedings of 2009 IEEE Inter-
national Symposium on Information Theory (ISIT2009), pp.463-467, Seoul, Korea,
Jun. 28-Jul. 3, 2009.

8. Hido, S., Tsuboi, Y., Kashima, H., Sugiyama, M., & Kanamori, T. Statistical out-
lier detection using direct density ratio estimation. Knowledge and Information
Systems, vol.26, no.2, pp.309–336, 2011.
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9. Suzuki, T. & Sugiyama, M. Sufficient dimension reduction via squared-loss mutual
information estimation. In Proceedings of Thirteenth International Conference on
Artificial Intelligence and Statistics (AISTATS2010), JMLR Workshop and Confer-
ence Proceedings, vol.9, pp.804–811, Sardinia, Italy, May 13-15, 2010.

10. Yamada, M. & Sugiyama, M. Dependence minimizing regression with model selec-
tion for non-linear causal inference under non-Gaussian noise. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI2010), pp.643–
648, Atlanta, Georgia, USA, Jul. 11-15, 2010.

11. * Suzuki, T. & Sugiyama, M. Least-squares independent component analysis. Neural
Computation, vol.23, no.1, pp.284–301, 2011.

12. Sugiyama, M., Takeuchi, I., Kanamori, T., Suzuki, T., Hachiya, H., & Okanohara,
D. Least-squares conditional density estimation. IEICE Transactions on Informa-
tion and Systems, vol.E93-D, no.3, pp.583–594, 2010.

13. * Sugiyama, M. Superfast-trainable multi-class probabilistic classifier by least-squares
posterior fitting. IEICE Transactions on Information and Systems, vol.E93-D, no.10,
pp.2690–2701, 2010.

14. Simm, J., Sugiyama, M., & Kato, T. Computationally efficient multi-task learning
with least-squares probabilistic classifiers. IPSJ Transactions on Computer Vision
and Applications, vol.3, pp.1–8, 2011.

15. Yamada, M., Sugiyama, M., & Matsui, T. Semi-supervised speaker identification
under covariate shift. Signal Processing, vol.90, no.8, pp.2353–2361, 2010.

16. Wichern, G., Yamada, M., Thornburg, H., Sugiyama, M., & Spanias, A. Automatic
audio tagging using covariate shift adaptation. To appear in Proceedings of IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP2010),
Dallas, Texas, USA, Mar. 14-19, 2010.

17. * Li, Y., Kambara, H., Koike, Y., & Sugiyama, M. Application of covariate shift
adaptation techniques in brain computer interfaces. IEEE Transactions on Biomed-
ical Engineering, vol.57, no.6, pp.1318–1324, 2010.

18. Hachiya, H., Akiyama, T., Sugiyama, M., & Peters, J. Adaptive importance sam-
pling for value function approximation in off-policy reinforcement learning. Neural
Networks, vol.22, no.10, pp.1399–1410, 2009.

19. Hachiya, H., Peters, J., & Sugiyama, M. Efficient sample reuse in EM-based policy
search. In Proceedings of European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML-PKDD2009), pp.469–
484, Bled, Slovenia, Sep. 7-11, 2009.
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20. * Akiyama, T., Hachiya, H., & Sugiyama, M. Efficient exploration through active
learning for value function approximation in reinforcement learning. Neural Net-
works, vol.23, no.5, pp.639–648, 2010.

21. Hachiya, H. & Sugiyama, M. Feature selection for reinforcement learning: Evaluat-
ing implicit state-reward dependency via conditional mutual information. In Pro-
ceedings of European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML-PKDD2010), pp.474–489, Barcelona,
Spain, Sep. 20-24, 2010.

22. * Ueki, K., Sugiyama, M., & Ihara, Y. Lighting condition adaptation for perceived
age estimation. IEICE Transactions on Information and Systems, to appear.

23. Yamanaka, M., Matsugu, M. & Sugiyama, M. Automatic detection of regions of
interest using multiple visual saliency measures based on density ratio estimation. In
Proceedings of Vision Engineering Workshop 2010 (ViEW2010), pp.7–8, Yokohama,
Japan, Dec. 9-10, 2010.

24. Hachiya, H., Sugiyama, M. & Ueda, N. Coping with new user problems: Trans-
fer learning in accelerometer-based human activity recognition. NIPS 2010 Work-
shop on Transfer Learning by Learning Rich Generative Models, Whistler, British
Columbia, Canada, Dec. 11, 2010.

25. Sugiyama, M., Kanamori, T., Suzuki, T., Hido, S., Sese, J., Takeuchi, I., & Wang,
L. A density-ratio framework for statistical data processing. IPSJ Transactions on
Computer Vision and Applications, vol.1, pp.183–208, 2009.

26. Sugiyama, M. A new approach to machine learning based on density ratios. Pro-
ceedings of the Institute of Statistical Mathematics, vol.58, no.2, pp.141–155, 2010.

27. Sugiyama, M. & Kawanabe, M. Covariate Shift Adaptation: Towards Machine
Learning under Non-Stationary Environment, MIT Press, Cambridge, MA, USA,
to appear.

28. Sugiyama, M., Suzuki, T., & Kanamori, T. Density Ratio Estimation in Machine
Learning: A Versatile Tool for Statistical Data Processing, Cambridge University
Press, Cambridge, UK, in preparation.

6 Interactions

On Jun. 25, 2009 (at the AOARD Roppongi office), Nov. 3, 2009 (at the ACML confer-
ence), and Dec. 21, 2010 (at my office at Tokyo Tech), I had technical discussions with my
program manager, Dr. Hiroshi Motoda, and received detailed comments and suggestions.

Below is the list of my presentations related to the project.

1. Dec. 22, 2010. Toshiba, Kawasaki, Japan.
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2. Dec. 1, 2010. Fujitsu, Kawasaki, Japan.

3. Nov. 30, 2010. GCOE Symposium at Tokyo Institute of Technology, Tokyo, Japan.

4. Nov. 25, 2010. LEAP Symposium at Tokyo Institute of Technology, Tokyo, Japan.

5. Nov. 24, 2010. Kyoto University, Kyoto, Japan.

6. Oct. 12, 2010. Sony, Tokyo, Japan.

7. Oct. 4, 2010. Google, Tokyo, Japan.

8. Sep. 20, 2010. Yahoo, Barcelona, Spain.

9. Sep. 14, 2010. Weierstrass Institute for Applied Analysis and Stochastics, Berlin,
Germany.

10. Sep. 13, 2010. Technical University Berlin, Berlin, Germany.

11. Aug. 3, 2010. Aichi Science and Technology Foundation, Nagoya, Japan.

12. Aug. 2, 2010. Nagoya Institute of Technology, Nagoya, Japan.

13. Jul. 20, 2010. NEC, Kawasaki, Japan.

14. Jul. 15, 2010. Georgia Institute of Technology, Atlanta, GA, USA.

15. Jun. 14, 2010. Institute of Electronics, Information and Communication Engineers,
Tokyo, Japan.

16. Jun. 7, 2010. Institute of Systems, Control and Information Engineers, Osaka,
Japan.

17. May 25, 2010. The Society of Instrument and Control Engineers, Tokyo, Japan.

18. Apr. 26, 2010. Carnegie Mellon University, Pittsburgh, PA, USA.

19. Apr. 21, 2010. NEC Soft, Tokyo, Japan.

20. Mar. 8, 2010. Kyoto University, Kyoto, Japan.

21. Dec. 21, 2009. Science Council of Japan, Tokyo, Japan.

22. Dec. 3, 2009. GCOE Symposium at Tokyo Institute of Technology, Tokyo, Japan.

23. Nov. 27, 2009. National Institute of Information and Communications Technology,
Kyoto, Japan.

24. Nov. 17, 2009. NECsoft, Tokyo, Japan.
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25. Nov. 3, 2009. 1st Asian Conference on Machine Learning (ACML2009), Nanjing,
China.

26. Oct. 16, 2009. NLP workshop, Tokyo, Japan.

27. Jun. 25, 2009. Asian Office of Aerospace Research & Development, Tokyo, Japan.

28. May. 21, 2009. NTT Communication Science Laboratories, Kanagawa, Japan.

7 Inventions

None.

8 Honors/Award

I received two awards related to the current project.

1. May 13, 2010. Incentive Award, The Institute of Electronics, Information and
Communication Engineers (IEICE), PRMU Technical Group.

2. Jun. 10, 2010. Incentive Award, Japanese Society for Artificial Intelligence (JSAI)
SIG-DMSM

The award 1 was given for a conference version of the publication 20, while the award
2 was given for a conference version of the publication 13.

9 Archival Documentation

Selected journal articles (1, 5, 6, 11, 13, 17, 20, and 22) are attached as archival documen-
tation. All the publications listed in Section 5 are available from http://sugiyama-www.

cs.titech.ac.jp/∼sugi/publications.html.

10 Software

Implementation of various density-ratio methods (mostly in MATLAB) is available from
my web page: http://sugiyama-www.cs.titech.ac.jp/∼sugi/software/index.html.
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Editor: Bianca Zadrozny

Abstract
We address the problem of estimating the ratio of two probability density functions, which is often
referred to as theimportance. The importance values can be used for various succeeding tasks
such ascovariate shift adaptationor outlier detection. In this paper, we propose a new importance
estimation method that has a closed-form solution; the leave-one-out cross-validation score can also
be computed analytically. Therefore, the proposed method is computationally highly efficient and
simple to implement. We also elucidate theoretical properties of the proposed method such as the
convergence rate and approximation error bounds. Numerical experiments show that the proposed
method is comparable to the best existing method in accuracy, while it is computationally more
efficient than competing approaches.
Keywords: importance sampling, covariate shift adaptation, novelty detection, regularization
path, leave-one-out cross validation

1. Introduction

In the context ofimportance sampling(Fishman, 1996), the ratio of two probability density func-
tions is called theimportance. The problem of estimating the importance is attracting a great deal of
attention these days since the importance can be used for various succeeding tasks such ascovariate
shift adaptationor outlier detection.

Covariate Shift Adaptation: Covariate shift is a situation in supervised learning where
the distributions of inputs change between the training and test phases but the con-
ditional distribution of outputs given inputs remains unchanged (Shimodaira, 2000;
Quiñonero-Candela et al., 2008). Covariate shift is conceivable in many real-world

∗. A MATLAB R© or R implementation of the proposed importance estimation algo-
rithm, unconstrained Least-Squares Importance Fitting (uLSIF), is available from
http://sugiyama-www.cs.titech.ac.jp/ ∼sugi/software/uLSIF/ .

c©2009 Takafumi Kanamori, Shohei Hido and Masashi Sugiyama.



KANAMORI , HIDO AND SUGIYAMA

applications such as bioinformatics (Baldi and Brunak, 1998; Borgwardt et al., 2006),
brain-computer interfaces (Wolpaw et al., 2002; Sugiyama et al., 2007), robot control
(Sutton and Barto, 1998; Hachiya et al., 2008), spam filtering (Bickel and Scheffer,
2007), and econometrics (Heckman, 1979). Under covariate shift, standard learning
techniques such as maximum likelihood estimation or cross-validation are biased and
therefore unreliable—the bias caused by covariate shift can be compensated by weight-
ing the loss function according to the importance (Shimodaira, 2000; Zadrozny, 2004;
Sugiyama and M̈uller, 2005; Sugiyama et al., 2007; Huang et al., 2007; Bickel et al.,
2007).

Outlier Detection: The outlier detection task addressed here is to identify irregular
samples in a validation data set based on a model data set that only contains regular
samples (Scḧolkopf et al., 2001; Tax and Duin, 2004; Hodge and Austin, 2004; Hido
et al., 2008). The values of the importance for regular samples are close to one, while
those for outliers tend to be significantly deviated from one. Thus the values of the
importance could be used as an index of the degree of outlyingness.

Below, we refer to the two sets of samples as thetraining set and thetestset.
A naive approach to estimating the importance is to first estimate the training and test density

functions from the sets of training and test samples separately, and then take the ratio of the esti-
mated densities. However, density estimation is known to be a hard problem particularly in high-
dimensional cases if we do not have simple and good parametric density models (Vapnik, 1998;
Härdle et al., 2004). In practice, such an appropriate parametric model may not be available and
therefore this naive approach is not so effective.

To cope with this problem, direct importance estimation methods which do not involve den-
sity estimation have been developed recently. Thekernel mean matching(KMM) method (Huang
et al., 2007) directly gives estimates of the importance at the training inputs by matching the two
distributions efficiently based on a special property ofuniversal reproducing kernel Hilbert spaces
(Steinwart, 2001). The optimization problem involved in KMM is a convex quadratic program, so
the unique global optimal solution can be obtained using a standard optimization software. How-
ever, the performance of KMM depends on the choice of tuning parameters such as the kernel pa-
rameter and the regularization parameter. For the kernel parameter, a popular heuristic of using the
median distance between samples as the Gaussian width could be useful in some cases (Schölkopf
and Smola, 2002; Song et al., 2007). However, there seems no strong justification for this heuristic
and the choice of other tuning parameters is still open.

A probabilistic classifier that separates training samples from test samples can be used for di-
rectly estimating the importance, for example, alogistic regression(LogReg) classifier (Qin, 1998;
Cheng and Chu, 2004; Bickel et al., 2007). Maximum likelihood estimation of LogReg models
can be formulated as a convex optimization problem, so the unique global optimal solution can be
obtained. Furthermore, since the LogReg-based method only involves a standard supervised clas-
sification problem, the tuning parameters such as the kernel width and the regularization parameter
can be optimized based on the standard cross-validation procedure. This is a very useful property
in practice.

TheKullback-Leibler importance estimation procedure(KLIEP) (Sugiyama et al., 2008b; Nguyen
et al., 2008) also directly gives an estimate of the importance function by matching the two distribu-
tions in terms of the Kullback-Leibler divergence (Kullback and Leibler, 1951). The optimization
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problem involved in KLIEP is convex, so the unique global optimal solution—which tends to be
sparse—can be obtained, when linear importance models are used. In addition, the tuning parame-
ters in KLIEP can be optimized based on a variant of cross-validation.

As reviewed above, LogReg and KLIEP are more advantageous than KMM since the tuning
parameters can be objectively optimized based on cross-validation. However, optimization proce-
dures of LogReg and KLIEP are less efficient in computation than KMM due to high non-linearity
of the objective functions to be optimized—more specifically, exponential functions induced by the
LogReg model or the log function induced by the Kullback-Leibler divergence. The purpose of
this paper is to develop a new importance estimation method that is equipped with a build-in model
selection procedure as LogReg and KLIEP and is computationally more efficient than LogReg and
KLIEP.

Our basic idea is to formulate the direct importance estimation problem as a least-squares
function fitting problem. This formulation allows us to cast the optimization problem as a con-
vex quadratic program, which can be efficiently solved using a standard quadratic program solver.
Cross-validation can be used for optimizing the tuning parameters such as the kernel width or the
regularization parameter. We call the proposed methodleast-squares importance fitting(LSIF).
We further show that the solutions of LSIF is piecewise linear with respect to theℓ1-regularization
parameter and the entire regularization path (that is, all solutions for different regularization pa-
rameter values) can be computed efficiently based on theparametric optimization technique(Best,
1982; Efron et al., 2004; Hastie et al., 2004). Thanks to this regularization path tracking algorithm,
LSIF is computationally efficient in model selection scenarios. Note that in the regularization path
tracking algorithm, we can trace the solution path without a quadratic program solver—we just need
to compute matrix inverses.

LSIF is shown to be efficient in computation, but it tends to share a common weakness of reg-
ularization path tracking algorithms, that is,accumulation of numerical errors(Scheinberg, 2006).
The numerical problem tends to be severe if there are many change points in the regularization
path. To cope with this problem, we develop an approximation algorithm in the same least-squares
framework. The approximation version of LSIF, which we callunconstrained LSIF(uLSIF), allows
us to obtain the closed-form solution that can be computed just by solving a system of linear equa-
tions. Thus uLSIF is numerically stable when regularized properly. Moreover, the leave-one-out
cross-validation score for uLSIF can also be computed analytically (cf. Wahba, 1990; Cawley and
Talbot, 2004), which significantly improves the computational efficiency in model selection scenar-
ios. We experimentally show that the accuracy of uLSIF is comparable to the best existing method
while its computation is faster than other methods in covariate shift adaptation and outlier detection
scenarios.

Our contributions in this paper are summarized as follows. A proposed density-ratio estima-
tion method, LSIF, is equipped with cross-validation (which is an advantage over KMM) and is
computationally efficient thanks to regularization path tracking (which is an advantage over KLIEP
and LogReg). Furthermore, uLSIF is computationally even more efficient since its solution and
leave-one-out cross-validation score can be computed analytically in a stable manner. The proposed
methods, LSIF and uLSIF, are similar in spirit to KLIEP, but the loss functions are different: KLIEP
uses the log loss while LSIF and uLSIF use the squared loss. The difference of the log functions
allows us to improve computational efficiency significantly.

The rest of this paper is organized as follows. In Section 2, we propose a new importance
estimation procedure based on least-squares fitting (LSIF) and show its theoretical properties. In
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Section 3, we develop an approximation algorithm (uLSIF) which can be computed efficiently. In
Section 4, we illustrate how the proposed methods behave using a toy data set. In Section 5, we dis-
cuss the characteristics of existing approaches in comparison with the proposed methods and show
that uLSIF could be a useful alternative to the existing methods. In Section 6, we experimentally
compare the performance of uLSIF and existing methods. Finally in Section 7, we summarize our
contributions and outline future prospects. Those who are interested in practical implementation
may skip the theoretical analyses in Sections 2.3, 3.2, and 3.3.

2. Direct Importance Estimation

In this section, we propose a new method of direct importance estimation.

2.1 Formulation and Notation

LetD ⊂ (Rd) be the data domain and suppose we are given independent and identically distributed
(i.i.d.) training samples{xtr

i }ntr
i=1 from a training distribution with densityptr(x) and i.i.d. test samples

{xte
j }nte

j=1 from a test distribution with densitypte(x):

{xtr
i }ntr

i=1
i.i.d .∼ ptr(x),

{xte
j }nte

j=1
i.i.d .∼ pte(x).

We assume that the training density is strictly positive, that is,

ptr(x) > 0 for all x∈D.

The goal of this paper is to estimate theimportance w(x) from {xtr
i }ntr

i=1 and{xte
j }nte

j=1:

w(x) =
pte(x)
ptr(x)

,

which is non-negative by definition. Our key restriction is that we want to avoid estimating densities
pte(x) andptr(x) when estimating the importancew(x).

2.2 Least-squares Approach to Direct Importance Estimation

Let us model the importancew(x) by the following linear model:

ŵ(x) =
b

∑
ℓ=1

αℓϕℓ(x), (1)

whereα = (α1,α2, . . . ,αb)
⊤ are parameters to be learned from data samples,⊤ denotes the transpose

of a matrix or a vector, and{ϕℓ(x)}bℓ=1 are basis functions such that

ϕℓ(x)≥ 0 for all x∈D and forℓ = 1,2, . . . ,b.

Note thatb and{ϕℓ(x)}bℓ=1 could be dependent on the samples{xtr
i }ntr

i=1 and{xte
j }nte

j=1, for example,

kernel models are also allowed. We explain how the basis functions{ϕℓ(x)}bℓ=1 are chosen in
Section 2.5.
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We determine the parameters{αℓ}bℓ=1 in the modelŵ(x) so that the following squared errorJ0

is minimized:

J0(α) =
1
2

Z

(ŵ(x)−w(x))2 ptr(x)dx

=
1
2

Z

ŵ(x)2ptr(x)dx−
Z

ŵ(x)w(x)ptr(x)dx+
1
2

Z

w(x)2ptr(x)dx

=
1
2

Z

ŵ(x)2ptr(x)dx−
Z

ŵ(x)pte(x)dx+
1
2

Z

w(x)2ptr(x)dx,

where in the second term the probability densityptr(x) is canceled with that included inw(x).
The squared lossJ0(α) is defined as the expectation under the probability of training samples. In
covariate shift adaptation (see Section 6.2) and outlier detection (see Section 6.3), the importance
values on the training samples are used. Thus, the definition ofJ0(α) well agrees with our goal.

The last term ofJ0(α) is a constant and therefore can be safely ignored. Let us denote the first
two terms byJ:

J(α) =
1
2

Z

ŵ(x)2ptr(x)dx−
Z

ŵ(x)pte(x)dx

=
1
2

b

∑
ℓ,ℓ′=1

αℓαℓ′

(
Z

ϕℓ(x)ϕℓ′(x)ptr(x)dx

)
−

b

∑
ℓ=1

αℓ

(
Z

ϕℓ(x)pte(x)dx

)

=
1
2

α⊤Hα−h⊤α, (2)

whereH is theb×b matrix with the(ℓ,ℓ′)-th element

Hℓ,ℓ′ =
Z

ϕℓ(x)ϕℓ′(x)ptr(x)dx, (3)

andh is theb-dimensional vector with theℓ-th element

hℓ =
Z

ϕℓ(x)pte(x)dx.

Approximating the expectations inJ by empirical averages, we obtain

Ĵ(α) =
1

2ntr

ntr

∑
i=1

ŵ(xtr
i )2− 1

nte

nte

∑
j=1

ŵ(xte
j )

=
1
2

b

∑
ℓ,ℓ′=1

αℓαℓ′

(
1
ntr

ntr

∑
i=1

ϕℓ(x
tr
i )ϕℓ′(x

tr
i )

)
−

b

∑
ℓ=1

αℓ

(
1

nte

nte

∑
j=1

ϕℓ(x
te
j )

)

=
1
2

α⊤Ĥα− ĥ
⊤

α,

whereĤ is theb×b matrix with the(ℓ,ℓ′)-th element

Ĥℓ,ℓ′ =
1
ntr

ntr

∑
i=1

ϕℓ(x
tr
i )ϕℓ′(x

tr
i ), (4)
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andĥ is theb-dimensional vector with theℓ-th element

ĥℓ =
1

nte

nte

∑
j=1

ϕℓ(x
te
j ). (5)

Taking into account the non-negativity of the importance functionw(x), we can formulate our opti-
mization problem as follows.

min
α∈Rb

[
1
2

α⊤Ĥα− ĥ
⊤

α+λ1⊤b α
]

subject toα≥ 0b, (6)

where 0b and 1b are theb-dimensional vectors with all zeros and ones, respectively; the vector
inequalityα≥ 0b is applied in the element-wise manner, that is,αℓ≥ 0 for ℓ = 1,2, . . . ,b. In Eq. (6),
we included a penalty termλ1⊤b α for regularization purposes, whereλ (≥ 0) is a regularization
parameter. The above is a convex quadratic programming problem and therefore the unique global
optimal solution can be computed efficiently by a standard optimization package. We call this
methodLeast-Squares Importance Fitting(LSIF).

We can also use theℓ2-regularizerα⊤α instead of theℓ1-regularizer 1⊤b α without changing the
computational property. However, using theℓ1-regularizer would be more advantageous since the
solution tends to be sparse (Williams, 1995; Tibshirani, 1996; Chen et al., 1998). Furthermore, as
shown in Section 2.6, the use of theℓ1-regularizer allows us to compute the entire regularization
path efficiently (Best, 1982; Efron et al., 2004; Hastie et al., 2004). Theℓ2-regularization method
will be used for theoretical analysis in Section 3.3.

2.3 Convergence Analysis of LSIF

Here, we theoretically analyze the convergence property of the solutionα̂ of the LSIF algorithm;
practitioners may skip this theoretical analysis.

Let α̂(λ) be the solution of the LSIF algorithm with regularization parameterλ, and letα∗(λ)
be the optimal solution of the ‘ideal’ problem:

min
α∈Rb

[
1
2

α⊤Hα−h⊤α+λ1⊤b α
]

subject toα≥ 0b. (7)

Below, we theoretically investigate thelearning curve(Amari et al., 1992) of LSIF, that is, we
elucidate the relation betweenJ(α̂(λ)) andJ(α∗(λ)) in terms of the expectation over all possible
training and test samples as a function of the number of samples.

Let E be the expectation over all possible training samples of sizentr and all possible test sam-
ples of sizente. LetA ⊂ {1,2, . . . ,b} be the set ofactiveindices (Boyd and Vandenberghe, 2004),
that is,

A = {ℓ | α∗ℓ(λ) = 0, ℓ= 1,2, . . . ,b}.
For the active setA = { j1, j2, . . . , j|A |}with j1 < j2 < · · ·< j|A |, letE be the|A |×b indicator matrix
with the(i, j)-th element

Ei, j =

{
1 j = j i ,

0 otherwise.
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Similarly, let Â be the active set of̂α(λ):

Â = {ℓ | α̂ℓ(λ) = 0, ℓ= 1,2, . . . ,b}.

For the active set̂A = { ĵ1, ĵ2, . . . , ĵ|Â|}with ĵ1 < ĵ2 < · · ·< ĵ|Â |, let Ê be the|Â |×b indicator matrix

with the(i, j)-th element similarly defined by

Êi, j =

{
1 j = ĵ i ,

0 otherwise.
(8)

First, we show the optimality condition of (6) which will be used in the following theoretical
analyses. TheLagrangianof the optimization problem (6) is given as

L(α,ξ) =
1
2

α⊤Ĥα− ĥ
⊤

α+λ1⊤b α−ξ⊤α,

whereξ is the b-dimensionalLagrange multipliervector. Then theKarush-Kuhn-Tucker (KKT)
conditions(Boyd and Vandenberghe, 2004) are expressed as follows:

Ĥα− ĥ+λ1b−ξ = 0b, (9)

α≥ 0b,

ξ≥ 0b,

ξℓαℓ = 0 for ℓ = 1,2, . . . ,b. (10)

Let ξ̂
′
(λ) be the|Â |-dimensional vector with thei-th element being thêj i-th element of̂ξ(λ):

ξ̂′i(λ) = ξ̂ ĵ i
(λ), i = 1, . . . ,|Â|. (11)

We assume that̂ξ
′
(λ) only contains non-zero elements ofξ̂(λ). Let Ĝ be

Ĝ =

(
Ĥ −Ê

⊤

−Ê O|Â |×|Â|

)
,

whereO|Â |×|Â| is the|Â |× |Â|matrix with all zeros. Then Eqs. (9) and (10) are together expressed
in a matrix form as

Ĝ

(
α̂(λ)

ξ̂
′
(λ)

)
=

(
ĥ−λ1b

0|Â |

)
. (12)

Regarding the matrix̂G, we have the following lemma:

Lemma 1 The matrixĜ is invertible ifĤ is invertible.

The proof of the above lemma is given in Appendix A. Below, we assume thatĤ is invertible.

Then the inverse of̂G exists and multiplyinĝG
−1

from the left-hand side of Eq. (12) yields
(

α̂(λ)

ξ̂
′
(λ)

)
= Ĝ

−1
(

ĥ−λ1b

0|A |

)
. (13)
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The following inversion formula holds for block matrices (Petersen and Pedersen, 2007):
(

M1 M2

M3 M4

)−1

=

(
M−1

1 +M−1
1 M2M−1

0 M3M−1
1 −M−1

1 M2M−1
0

−M−1
0 M3M−1

1 M−1
0

)
, (14)

where
M0 = M4−M3M−1

1 M2.

Applying Eq. (14) to Eq. (13), we have

α̂(λ) = Â(̂h−λ1b), (15)

whereÂ is defined by

Â = Ĥ
−1− Ĥ

−1
Ê
⊤
(ÊĤ

−1
Ê
⊤
)−1ÊĤ

−1
. (16)

When the Lagrange multiplier vector satisfies

ξ∗ℓ(λ) > 0 for all ℓ ∈ A , (17)

we say that thestrict complementarity conditionis satisfied (Bertsekas et al., 2003). An important
consequence of strict complementarity is that the optimal solution and the Lagrange multipliers of
convex quadratic problems are uniquely determined. Then we have the following theorem.

Theorem 2 Let P be the probability over all possible training samples of size ntr and test samples of
size nte. Letξ∗(λ) be the Lagrange multiplier vector of the problem(7) and supposeξ∗(λ) satisfies
the strict complementarity condition(17). Then, there exists a positive constant c> 0 and a natural
number N such that formin{ntr,nte} ≥ N,

P(Â 6= A) < e−cmin{ntr,nte}.

The proof of the above theorem is given in Appendix B. Theorem 2 shows that the probability
that the active set̂A of the empirical problem (6) is different from the active setA of the ideal
problem (7) is exponentially small. Thus we may regardÂ = A in practice.

Let A be the ‘ideal’ counterpart of̂A:

A = H−1−H−1E⊤(EH−1E⊤)−1EH−1,

and letCw,w′ be theb×b covariance matrix with the(ℓ,ℓ′)-th element being the covariance between
w(x)ϕℓ(x) andw′(x)ϕℓ′(x) underptr(x). Let

w∗(x) =
b

∑
ℓ=1

α∗ℓ(λ)ϕℓ(x),

v(x) =
b

∑
ℓ=1

[A1b]ℓϕℓ(x).

Let
f (n) = ω(g(n))

denote thatf (n) asymptotically dominatesg(n); more precisely, for allC > 0, there existsn0 such
that

|Cg(n)|< | f (n)| for all n > n0.

Then we have the following theorem.
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Theorem 3 Assume that

(a) The optimal solution of the problem(7) satisfies the strict complementarity condition(17).

(b) ntr and nte satisfy
nte = ω(n2

tr). (18)

Then, for anyλ≥ 0, we have

E[J(α̂(λ))] = J(α∗(λ))+
1

2ntr
tr(A(Cw∗,w∗−2λCw∗,v))+o

(
1
ntr

)
. (19)

The proof of the above theorem is given in Appendix C. This theorem elucidates the learning
curve of LSIF up to the order ofn−1

tr . In Section 2.4.1, we discuss practical implications of this
theorem.

2.4 Model Selection for LSIF

The practical performance of LSIF depends on the choice of the regularization parameterλ and
basis functions{ϕℓ(x)}bℓ=1 (which we refer to as amodel). Since our objective is to minimize the
cost functionJ defined in Eq. (2), it is natural to determine the model such thatJ is minimized.

However, the value of the cost functionJ is inaccessible since it includes the expectation over
unknown probability density functionsptr(x) andpte(x). The value of the empirical cost̂J may be
regarded as an estimate ofJ, but this is not useful for model selection purposes since it is heavily
biased—the bias is caused by the fact that the same samples are used twice for learning the parameter
α and estimating the value ofJ. Below, we give two practical methods of estimating the value ofJ
in more precise ways.

2.4.1 INFORMATION CRITERION

In the same way as Theorem 3, we can obtain an asymptotic expansion of the empirical cost

E

[
Ĵ(α̂(λ))

]
as follows:

E[Ĵ(α̂(λ))] = J(α∗(λ))− 1
2ntr

tr(A(Cw∗,w∗ +2λCw∗,v))+o

(
1
ntr

)
. (20)

Combining Eqs. (19) and (20), we have

E[J(α̂(λ))] = E[Ĵ(α̂(λ))]+
1
ntr

tr(ACw∗,w∗)+o

(
1
ntr

)
.

From this, we can immediately obtain aninformation criterion(Akaike, 1974; Konishi and Kita-
gawa, 1996) for LSIF:

Ĵ(IC) = Ĵ(α̂(λ))+
1
ntr

tr(ÂĈŵ,ŵ),

whereÂ is defined by Eq. (16).̂E is defined by Eq. (8) and̂Cw,w′ is theb×b covariance matrix with
the(ℓ,ℓ′)-th element being the covariance betweenw(x)ϕℓ(x) andw′(x)ϕℓ′(x) over{xtr

i }ntr
i=1. Since

Â andĈŵ,ŵ are consistent estimators ofA andCw∗,w∗ , the above information criterion is unbiased up
to the order ofn−1

tr .
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Note that the term tr(̂AĈŵ,ŵ) may be interpreted as theeffective dimensionof the model (Moody,
1992). Indeed, when̂w(x) = 1, we havêH = Ĉŵ,ŵ and thus

tr(ÂĈŵ,ŵ) = tr(Ib)− tr(EĈ
−1
ŵ,ŵE⊤(EĈ

−1
ŵ,ŵE⊤)−1) = b−|Â |,

which is the dimension of thefaceon whichα̂(λ) lies.

2.4.2 CROSS-VALIDATION

Although the information criterion derived above is more accurate than just a naive empirical estima-
tor, its accuracy is guaranteed only asymptotically. Here, we employ cross-validation for estimating
J(α̂), which has an accuracy guarantee for finite samples.

First, the training samples{xtr
i }ntr

i=1 and test samples{xte
j }nte

j=1 are divided intoR disjoint subsets
{X tr

r }Rr=1 and {X te
r }Rr=1, respectively. Then an importance estimateŵX tr

r ,X te
r
(x) is obtained using

{X tr
j } j 6=r and{X te

j } j 6=r (that is, withoutX tr
r andX te

r ), and the costJ is approximated using the
held-out samplesX tr

r andX te
r as

Ĵ(CV)
X tr

r ,X te
r

=
1

2|X tr
r | ∑

xtr∈X tr
r

ŵX tr
r ,X te

r
(xtr)2− 1

|X te
r | ∑

xte∈X te
r

ŵX tr
r ,X te

r
(xte).

This procedure is repeated forr = 1,2, . . . ,Rand its averagêJ(CV) is used as an estimate ofJ:

Ĵ(CV) =
1
R

R

∑
r=1

Ĵ(CV)
X tr

r ,X te
r
.

We can show that̂J(CV) gives an almost unbiased estimate of the true costJ, where the ‘almost’-ness
comes from the fact that the number of samples is reduced in the cross-validation procedure due to
data splitting (Luntz and Brailovsky, 1969; Wahba, 1990; Schölkopf and Smola, 2002).

Cross-validation would be more accurate than the information criterion for finite samples. How-
ever, it is computationally more expensive than the information criterion since the learning proce-
dure should be repeatedR times.

2.5 Heuristics of Basis Function Design for LSIF

A good model may be chosen by cross-validation or the information criterion, given that a family of
promising model candidates is prepared. As model candidates, we propose using a Gaussian kernel
model centered at thetestpoints{xte

j }nte
j=1, that is,

ŵ(x) =
nte

∑
ℓ=1

αℓKσ(x,xte
ℓ ),

whereKσ(x,x′) is the Gaussian kernel with kernel widthσ:

Kσ(x,x′) = exp

(
−‖x−x′‖2

2σ2

)
. (21)

The reason why we chose the test points{xte
j }nte

j=1 as the Gaussian centers, not the training points
{xtr

i }ntr
i=1, is as follows (Sugiyama et al., 2008b). By definition, the importancew(x) tends to take
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large values if the training densityptr(x) is small and the test densitypte(x) is large; conversely,
w(x) tends to be small (that is, close to zero) ifptr(x) is large andpte(x) is small. When a function
is approximated by a Gaussian kernel model, many kernels may be needed in the region where the
output of the target function is large; on the other hand, only a small number of kernels would be
enough in the region where the output of the target function is close to zero. Following this heuristic,
we allocate many kernels at hightestdensity regions, which can be achieved by setting the Gaussian
centers at the test points{xte

j }nte
j=1.

Alternatively, we may locate(ntr +nte) Gaussian kernels at both{xtr
i }ntr

i=1 and{xte
j }nte

j=1. However,
in our preliminary experiments, this did not further improve the performance, but just slightly in-
creased the computational cost. Whennte is large, just using all the test points{xte

j }nte
j=1 as Gaussian

centers is already computationally rather demanding. To ease this problem, we practically propose
using a subset of{xte

j }nte
j=1 as Gaussian centers for computational efficiency, that is,

ŵ(x) =
b

∑
ℓ=1

αℓKσ(x,cℓ), (22)

wherecℓ, ℓ = 1,2, . . . ,b are template points randomly chosen from{xte
j }nte

j=1 without replacement
andb (≤ nte) is a prefixed number. In the rest of this paper, we usually fix the number of template
points at

b = min(100,nte),

and optimize the kernel widthσ and the regularization parameterλ by cross-validation with grid
search.

2.6 Entire Regularization Path for LSIF

We can show that the LSIF solution̂α is piecewise linear with respect to the regularization parameter
λ (see Appendix D). Therefore, theregularization path(that is, solutions for allλ) can be computed
efficiently based on theparametric optimization technique(Best, 1982; Efron et al., 2004; Hastie
et al., 2004).

A basic idea of regularization path tracking is to check violation of the KKT conditions—which
are necessary and sufficient for optimality of convex programs—when the regularization parameter
λ is changed. The KKT conditions of LSIF are summarized in Section 2.3. The strict comple-
mentarity condition (17) assures the uniqueness of the optimal solution for a fixedλ, and thus the
uniqueness of the regularization path. A pseudo code of the regularization path tracking algorithm
for LSIF is described in Figure 1—its detailed derivation is summarized in Appendix D. Thanks to
the regularization path algorithm, LSIF is computationally efficient in model selection scenarios.

The pseudo code implies that we no longer need a quadratic programming solver for obtaining
the solution of LSIF—just computing matrix inverses is enough. Furthermore, the regularization
path algorithm is computationally more efficient when the solution is sparse, that is, most of the
elements are zero since the number of change points tends to be small for such sparse solutions.

Even though the regularization path tracking algorithm is computationally efficient, it tends to
be numerically unreliable, as we experimentally show in Section 4. This numerical instability is
caused by near singularity of the matrix̂G. WhenĜ is nearly singular, it is not easy to accurately
obtain the solutionsu,v in Figure 1, and therefore the change pointλτ+1 cannot be accurately com-
puted. As a result, we cannot accurately update the active set of the inequality constraints and thus

1401



KANAMORI , HIDO AND SUGIYAMA

Input: Ĥ and ĥ % see Eqs. (4) and (5) for the definitions
Output: entire regularization patĥα(λ) for λ≥ 0

τ←− 0;
k←− argmaxi{ĥi | i = 1,2, . . . ,b};
λτ←− ĥk;
Â ←− {1,2, . . . ,b}\{k};
α̂(λτ)←− 0b; % the vector with all zeros
While λτ > 0

Ê←−O|Â |×b; % the matrix with all zeros

For i = 1,2, . . . ,|Â|
Êi, ĵ i
←− 1; % Â = { ĵ1, ĵ2, . . . , ĵ|Â| | ĵ1 < ĵ2 < · · ·< ĵ|Â |}

end

Ĝ←−
(

Ĥ −Ê
⊤

−Ê O|Â |×|Â|

)
;

u←− Ĝ
−1

(
ĥ

0|Â |

)
;

v←− Ĝ
−1

(
1b

0|Â |

)
;

If v≤ 0b+|Â| % the final interval

λτ+1←− 0;
α̂(λτ+1)←− (u1,u2, . . . ,ub)

⊤;
else % an intermediate interval

k←− argmaxi{ui/vi | vi > 0, i = 1,2, . . . ,b+ |Â|};
λτ+1←−max{0,uk/vk};
α̂(λτ+1)←− (u1,u2, . . . ,ub)

⊤−λτ+1(v1,v2, . . . ,vb)
⊤;

If 1≤ k≤ b
Â ←− Â ∪{k};

else
Â ←− Â\{ ĵk−b};

end
end
τ←− τ+1;

end

α̂(λ)←−
{

0b if λ≥ λ0
λτ+1−λ
λτ+1−λτ

α̂(λτ)+ λ−λτ
λτ+1−λτ

α̂(λτ+1) if λτ+1≤ λ≤ λτ

Figure 1: Pseudo code for computing the entire regularization path of LSIF.When the computation

of Ĝ
−1

is numerically unstable, we may add small positive diagonals toĤ for stabilization
purposes.
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the obtained solution̂α(λ) becomes unreliable; furthermore, such numerical error tends to be accu-
mulated through the path-tracking process. This instability issue seems to be a common pitfall of
solution path tracking algorithms in general (see Scheinberg, 2006).

When the Gaussian widthσ is very small or very large, the matrix̂H tends to be nearly singular
and thus the matrix̂Galso becomes nearly singular. On the other hand, when the Gaussian widthσ is
not too small or too large compared with the dispersion of samples, the matrixĜ is well-conditioned
and therefore the path-following algorithm would be stable and reliable.

3. Approximation Algorithm

Within the quadratic programming formulation, we have proposed a new importance estimation
procedure LSIF and showed its theoretical properties. We also gave a regularization path tracking
algorithm that can be computed efficiently. However, as we experimentally show in Section 4, it
tends to suffer from a numerical problem and therefore is not practically reliable. In this section, we
give a practical alternative to LSIF which gives an approximate solution to LSIF in a computation-
ally efficient and reliable manner.

3.1 Unconstrained Least-squares Formulation

The approximation idea we introduce here is very simple: we ignore the non-negativity constraint
of the parameters in the optimization problem (6). This results in the following unconstrained
optimization problem.

min
β∈Rb

[
1
2

β⊤Ĥβ− ĥ
⊤

β+
λ
2

β⊤β
]
. (23)

In the above, we included a quadratic regularization termβ⊤β/2, instead of the linear one 1⊤b β since
the linear penalty term does not work as a regularizer without the non-negativity constraint. Eq. (23)
is an unconstrained convex quadratic program, so the solution can be analytically computed as

β̃(λ) = (Ĥ +λIb)
−1ĥ,

whereIb is theb-dimensional identity matrix. Since we dropped the non-negativity constraintβ ≥
0b, some of the learned parameters could be negative. To compensate for this approximation error,
we modify the solution by

β̂(λ) = max(0b, β̃(λ)),

where the ‘max’ operation for a pair of vectors is applied in the element-wise manner. This is the
solution of the approximation method we propose in this section.

An advantage of the above unconstrained formulation is that the solution can be computed just
by solving a system of linear equations. Therefore, its computation is stable whenλ is not too small.
We call this methodunconstrained LSIF(uLSIF). Due to theℓ2 regularizer, the solution tends to
be close to 0b to some extent. Thus, the effect of ignoring the non-negativity constraint may not be
so strong—later, we analyze the approximation error both theoretically and experimentally in more
detail in Sections 3.3 and 4.5.

Note that LSIF and uLSIF differ only in parameter learning. Thus, the basis design heuristic of
LSIF given in Section 2.5 is also valid for uLSIF.
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3.2 Convergence Analysis of uLSIF

Here, we theoretically analyze the convergence property of the solutionβ̂(λ) of the uLSIF algo-
rithm; practitioners may skip Sections 3.2 and 3.3.

Let β◦(λ) be the optimal solution of the ‘ideal’ version of the problem (23):

min
β∈Rb

[
1
2

β⊤Hβ−h⊤β+
λ
2

β⊤β
]
.

Then the ideal solutionβ∗(λ) is given by

β∗(λ) = max(0b,β◦(λ)),

β◦(λ) = B−1
λ h, (24)

Bλ = H +λIb.

Below, we theoretically investigate the learning curve of uLSIF.
LetB ⊂ {1,2, . . . ,b} be the set of negative indices ofβ◦(λ), that is,

B = {ℓ | β◦ℓ(λ) < 0, ℓ= 1,2, . . . ,b},

andB̃ ⊂ {1,2, . . . ,b} be the set of negative indices ofβ̃(λ), that is,

B̃ = {ℓ | β̃ℓ(λ) < 0, ℓ= 1,2, . . . ,b}.

Then we have the following theorem.

Theorem 4 Assume thatβ◦ℓ(λ) 6= 0 for ℓ = 1,2, . . . ,b. Then, there exists a positive constant c and
a natural number N such that formin{ntr,nte} ≥ N,

P(B 6= B̃) < e−cmin{ntr,nte}.

The proof of the above theorem is given in Appendix E. The assumption thatβ◦ℓ(λ) 6= 0 for
ℓ = 1,2, . . . ,b corresponds to the strict complementarity condition (17) in LSIF. Theorem 4 shows
that the probability that̃B is different fromB is exponentially small. Thus we may regardB̃ = B in
practice.

Let D be theb-dimensional diagonal matrix with theℓ-th diagonal element

Dℓ,ℓ =

{
0 ℓ ∈ B,

1 otherwise.

Let

w◦(x) =
b

∑
ℓ=1

β◦ℓ(λ)ϕℓ(x),

u(x) =
b

∑
ℓ=1

[B−1
λ D(Hβ∗(λ)−h)]ℓϕℓ(x).

Then we have the following theorem.
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Theorem 5 Assume that

(a) β◦ℓ(λ) 6= 0 for ℓ = 1,2, . . . ,b.

(b) ntr and nte satisfy Eq.(18).

Then, for anyλ≥ 0, we have

E[J(β̂(λ))] = J(β∗(λ))+
1

2ntr
tr(B−1

λ DHDB−1
λ Cw◦,w◦ +2B−1

λ Cw◦,u)+o

(
1
ntr

)
. (25)

The proof of the above theorem is given in Appendix F. Theorem 5 elucidates the learning curve
of uLSIF up to the order ofn−1

tr . An information criterion may be obtained in the same way as
Section 2.4.1. However, as shown in Section 3.4, we can have a closed-form expression of the
leave-one-out cross-validation score for uLSIF, which would be practically more useful. For this
reason, we do not go into the detail of information criterion.

3.3 Approximation Error Bounds for uLSIF

The uLSIF method is introduced as an approximation of LSIF. Here, we theoretically evaluate the
difference between the uLSIF solutionβ̂(λ) and the LSIF solution̂α(λ). More specifically, we use
the following normalizedL2-norm on the training samples as the difference measure and derive its
upper bounds:

diff(λ) =
infλ′≥0

√
1
ntr

∑ntr
i=1

(
ŵ(xtr

i ; α̂(λ′))− ŵ(xtr
i ; β̂(λ))

)2

∑ntr
i=1 ŵ(xtr

i ; β̂(λ))
, (26)

where the importance function̂w(x;α) is given by

ŵ(x;α) =
b

∑
ℓ=1

αℓϕℓ(x).

In the theoretical analysis below, we assume

ntr

∑
i=1

ŵ(xtr
i ; β̂(λ)) 6= 0.

For p∈ N∪{∞}, let ‖ · ‖p be theLp-norm, and let‖α‖Ĥ be

‖α‖Ĥ =
√

α⊤Ĥα, (27)

whereĤ is theb×b matrix defined by Eq. (4). Then we have the following theorem.

Theorem 6 (Norm bound) Assume that all basis functions satisfy

0 < ϕℓ(x)≤ 1.
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Then we have

diff(λ) ≤ ‖β̂(λ)‖Ĥ
∑ntr

i=1 ŵ(xtr
i ; β̂(λ))

(28)

≤ b2
(

1+
b
λ

)
1

minℓ ∑ntr
i=1 ϕℓ(xtr

i )
· nte

minℓ ∑nte
j=1 ϕℓ(xte

j )
, (29)

where b is the number of basis functions. The upper bound(29) is reduced as the regularization
parameterλ increases. For the Gaussian basis function model(22), the upper bound (29) is reduced
as the Gaussian widthσ increases.

The proof of the above theorem is given in Appendix G. We call Eq. (28) thenorm boundsince
it is governed by the norm of̂β. Intuitively, the approximation error of uLSIF would small ifλ is
large sincẽβ ≥ 0 may not be severely violated due to the strong regularization effect. The upper
bound (29) justifies this intuitive claim since the error bound tends to be small if the regularization
parameterλ is large. Furthermore, the upper bound (29) shows that for the Gaussian basis function
model (22), the error bound tends to be small if the Gaussian widthσ is large. This is also intuitive
since the Gaussian basis functions are nearly flat when the Gaussian widthσ is large—a difference
in parameters does not cause a significant change in the learned importance functionŵ(x). From
the above theorem, we expect that uLSIF is a nice approximation of LSIF whenλ is large andσ is
large. In Section 4.5, we numerically investigate this issue.

Below, we give a more sophisticated bound on diff(λ). To this end, let us introduce an interme-
diate optimization problem defined by

min
γ∈Rb

[
1
2

γ⊤Ĥγ− ĥ
⊤

γ+
λ
2

γ⊤γ
]

subject toγ≥ 0b, (30)

which we refer to asLSIF with quadratic penalty(LSIFq). LSIFq bridges LSIF and uLSIF since
the ‘goodness-of-fit’ part is the same as LSIF but the ‘regularization’ part is the same as uLSIF. Let
γ̂(λ) be the optimal solution of LSIFq (30). Based on the solution of LSIFq, we have the following
upper bound.

Theorem 7 (Bridge bound) For anyλ≥ 0, the following inequality holds:

diff(λ) ≤

√
λ
(
‖γ̂(λ)‖1 · ‖γ̂(λ)‖∞−‖γ̂(λ)‖22

)
+‖γ̂(λ)− β̂(λ)‖Ĥ

∑ntr
i=1 ŵ(xtr

i ; β̂(λ))
. (31)

The proof of the above theorem is given in Appendix H. We call the above bound thebridge
boundsince the bridged estimatorγ̂(λ) plays a central role in the bound. Note that, in the bridge
bound, the inside of the square root is assured to be non-negative due to Hölder’s inequality (see
Appendix H for detail). The bridge bound is generally much sharper than the norm bound (28), but
not always (see Section 4.5 for numerical examples).
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3.4 Efficient Computation of Leave-one-out Cross-validation Score for uLSIF

A practically important advantage of uLSIF over LSIF is that the score of leave-one-out cross-
validation (LOOCV) can be computed analytically—thanks to this property, the computational
complexity for performing LOOCV is the same order as just computing a single solution.

In the current setup, we are given two sets of samples,{xtr
i }ntr

i=1 and{xte
j }nte

j=1, which generally
have different sample size. For simplicity, we assume thatntr < nte and thei-th training samplextr

i
and thei-th test samplexte

i are held out at the same time; the test samples{xte
j }nte

j=ntr+1 are always
used for importance estimation. Note that this assumption is only for the sake of simplicity; we can
change the order of test samples without sacrificing the computational advantages.

Let ŵ(i)(x) be an estimate of the importance obtained without thei-th training samplextr
i and the

i-th test samplexte
i . Then the LOOCV score is expressed as

LOOCV =
1
ntr

ntr

∑
i=1

[
1
2
(ŵ(i)(xtr

i ))2− ŵ(i)(xte
i )

]
. (32)

Our approach to efficiently computing the LOOCV score is to use theSherman-Woodbury-Morrison
formula (Golub and Loan, 1996) for computing matrix inverses: for an invertible square matrixA
and vectorsu andv such thatv⊤A−1u 6=−1,

(A+uv⊤)−1 = A−1− A−1uv⊤A−1

1+v⊤A−1u
. (33)

Efficient approximation schemes of LOOCV have often been investigated under asymptotic
setups (Stone, 1974; Hansen and Larsen, 1996). On the other hand, we provide the exact LOOCV
score of uLSIF, which follows the same line as that of ridge regression (Hoerl and Kennard, 1970;
Wahba, 1990).

A pseudo code of uLSIF with LOOCV-based model selection is summarized in Figure 2—its
detailed derivation is described in Appendix I. Note that the basis-function design heuristic given
in Section 2.5 is used in the pseudo code, but the analytic form of the LOOCV score is available for
any basis functions.

4. Illustrative Examples

In this section, we illustrate the behavior of LSIF and uLSIF using a toy data set.

4.1 Setup

Let the dimension of the domain bed = 1 and the training and test densities be

ptr(x) =N (x;1,(1/2)2),

pte(x) =N (x;2,(1/4)2),

whereN (x;µ,σ2) denotes the Gaussian density with meanµ and varianceσ2. These densities are
depicted in Figure 3. The task is to estimate the importancew(x) = pte(x)/ptr(x).
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Input: {xtr
i }

ntr
i=1 and{xte

j }
nte
j=1

Output: ŵ(x)

b←−min(100,nte); n←−min(ntr,nte);
Randomly chooseb centers{cℓ}bℓ=1 from {xte

j }
nte
j=1 without replacement;

For each candidate of Gaussian widthσ

Ĥℓ,ℓ′ ←−
1
ntr

ntr

∑
i=1

exp

(
−‖x

tr
i −cℓ‖2 +‖xtr

i −cℓ′‖2
2σ2

)
for ℓ,ℓ′ = 1,2, . . . ,b;

ĥℓ←−
1

nte

nte

∑
j=1

exp

(
−
‖xte

j −cℓ‖2

2σ2

)
for ℓ = 1,2, . . . ,b;

Xtr
ℓ,i ←− exp

(
−‖x

tr
i −cℓ‖2
2σ2

)
for i = 1,2, . . . ,n andℓ = 1,2, . . . ,b;

Xte
ℓ,i ←− exp

(
−‖x

te
i −cℓ‖2
2σ2

)
for i = 1,2, . . . ,n andℓ = 1,2, . . . ,b;

For each candidate of regularization parameterλ

B̂←− Ĥ +
λ(ntr−1)

ntr
Ib;

B0←− B̂
−1

ĥ1⊤n + B̂
−1

Xtr diag

(
ĥ
⊤

B̂
−1

Xtr

ntr1⊤n −1⊤b (Xtr ∗ B̂
−1

Xtr)

)
;

B1←− B̂
−1

Xte+ B̂
−1

Xtr diag

(
1⊤b (Xte∗ B̂

−1
Xtr)

ntr1⊤n −1⊤b (Xtr ∗ B̂
−1

Xtr)

)
;

B2←−max

(
Ob×n,

ntr−1
ntr(nte−1)

(nteB0−B1)

)
;

wtr←− (1⊤b (Xtr ∗B2))
⊤; wte←− (1⊤b (Xte∗B2))

⊤;

LOOCV(σ,λ)←− w⊤tr wtr

2n
− 1⊤n wte

n
;

end
end
(σ̂, λ̂)←− argmin(σ,λ) LOOCV(σ,λ);

H̃ℓ,ℓ′ ←−
1
ntr

ntr

∑
i=1

exp

(
−‖x

tr
i −cℓ‖2 +‖xtr

i −cℓ′‖2
2σ̂2

)
for ℓ,ℓ′ = 1,2, . . . ,b;

h̃ℓ←−
1

nte

nte

∑
j=1

exp

(
−
‖xte

j −cℓ‖2

2σ̂2

)
for ℓ = 1,2, . . . ,b;

α̂←−max(0b,(H̃ + λ̂Ib)
−1h̃);

ŵ(x)←−
b

∑
ℓ=1

α̂ℓ exp

(
−‖x−cℓ‖2

2σ̂2

)
;

Figure 2: Pseudo code of uLSIF algorithm with LOOCV.B∗B′ denotes the element-wise multi-
plication of matricesB andB′ of the same size, that is, the(i, j)-th element is given by
Bi, jB′i, j . For n-dimensional vectorsb andb′, diag

(
b
b′
)

denotes then×n diagonal matrix
with i-th diagonal elementbi/b′i . A MATLAB R© or R implementation of uLSIF is avail-
able fromhttp://sugiyama-www.cs.titech.ac.jp/ ∼sugi/software/uLSIF/ .
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4.2 Importance Estimation

First, we illustrate the behavior of LSIF and uLSIF in importance estimation. We set the number
of training and test samples atntr = 200 andnte = 1000, respectively. We use the Gaussian kernel
model (22), and the number of basis functions is set atb = 100. The centers of the kernel function
are randomly chosen from the test points{xte

i }n
te

j=1 without replacement (see Section 2.5).
We test different Gaussian widthsσ and different regularization parametersλ. The following

two setups are examined:

(A) λ is fixed atλ = 0.2 andσ is changed as 0.1≤ σ≤ 1.0,

(B) σ is fixed atσ = 0.3 andλ is changed as 0≤ λ≤ 0.5.

Figure 4 depicts the true importance and its estimates obtained by LSIF and uLSIF, where all
importance functions are normalized so that

R

w(x)dx= 1 for better comparison. Figures 4(a) and
4(b) show that the estimated importanceŵ(x) tends to be too peaky when the Gaussian widthσ
is small, while it tends to be overly smoothed whenσ is large. If the Gaussian width is chosen
appropriately, both LSIF and uLSIF seem to work reasonably well. As shown in Figures 4(c)
and 4(d), the solutions of LSIF and uLSIF also significantly change when different regularization
parametersλ are used. Again, given that the regularization parameter is chosen appropriately, both
LSIF and uLSIF tend to perform well.

From the graphs, we also observe that model selection based on cross-validation works rea-
sonably well for both LSIF (5-fold) and uLSIF (leave-one-out) to choose appropriate values of the
Gaussian width or the regularization parameter; this will be analyzed in more detail in Section 4.4.

4.3 Regularization Path

Next, we illustrate how the regularization path tracking algorithm for LSIF behaves. We set the
number of training and test samples atntr = 50 andnte = 100, respectively. For better illustration,
we set the number of basis functions at a small value asb = 30 in the Gaussian kernel model (22)
and use the Gaussian kernels centered at equidistant points in[0,3] as basis functions.

We use the algorithm described in Figure 1 for regularization path tracking. Theoretically, the
inequalityλτ+1 < λτ is assured. In numerical computation, however, the inequality is occasionally
violated. In order to avoid this numerical problem, we slightly regularizeĤ for stabilization (see
also the caption of Figure 1).

Figure 5 depicts the values of the estimated coefficients{αℓ}bℓ=1 as functions of‖α‖1 for
σ = 0.1,0.3, and 0.5. Note that small‖α‖1 corresponds to largeλ. The figure indicates that the
regularization parameterλ works as a sparseness controlling factor of the solution, that is, the larger
(smaller) the value ofλ (‖α‖1) is, the sparser the solution is.

The path following algorithm is computationally efficient and therefore practically very attrac-
tive. However, as the above experiments illustrate, the path following algorithm is numerically
rather unstable. Modification of̂H can ease to solve this problem, but this in turn results in accu-
mulating numerical errors through the path tracking process. Consequently, the solutions for small
λ tend to be inaccurate. This problem becomes prominent if the number of change points in the
regularization path is large.
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Figure 3: The solid line is the probability density of training data, and the dashedline is the proba-
bility density of test data.
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(a) LSIF forλ = 0.2, σ = 0.1,0.4,1.0.
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(b) uLSIF forλ = 0.2, σ = 0.1,0.3,1.0.
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(c) LSIF for σ = 0.3, λ = 0,0.2,0.5.
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(d) uLSIF forσ = 0.3, λ = 0,0.09,0.5.

Figure 4: True and estimated importance functions obtained by LSIF and uLSIF for various differ-
ent Gaussian widthsσ and regularization parametersλ.
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(c) σ = 0.5.

Figure 5: Regularization path of LSIF: the values of the estimated coefficients{αℓ}bℓ=1 are depicted
as functions of theL1-norm of the estimated parameter vector forσ = 0.1,0.3, and 0.5.
Small‖α‖1 corresponds to largeλ.

4.4 Cross-validation

Here we illustrate the behavior of the cross-validation scores of LSIF and uLSIF. We set the number
of training and test samples atntr = 200 andnte = 1000, respectively. The number of template
points isb = 100 and the Gaussian kernel model (22) is used. The centers of the kernel functions
are randomly chosen from the test points as described in Section 4.2. The left column of Figure 6
depicts the expectation of the true costJ(α̂) over 50 runs for LSIF and its estimate by 5-fold CV (25,
50, and 75 percentiles are plotted in the figure) as functions of the Gaussian widthσ for λ = 0.2, 0.5,
and 0.8. We used the regularization path tracking algorithm for computing the solutions of LSIF.
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(a) LSIF with 5CV (λ= 0.2).
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(b) uLSIF with LOOCV (λ= 0.2).

0.1 0.2 0.5 1.0

−
3.

0
−

2.
0

−
1.

0
0.

0

σσ (Gaussian width)

J

(c) LSIF with 5CV (λ= 0.5).
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(d) uLSIF with LOOCV (λ= 0.5).
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(e) LSIF with 5CV (λ= 0.8).
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(f) uLSIF with LOOCV (λ= 0.8).

Figure 6: The true costJ and its cross-validation estimate as functions of Gaussian widthσ for
different values ofλ. The solid line denotes the expectation of the true costJ over 50
runs, while ‘◦’ and error bars denote the 25, 50, and 75 percentiles of the cross-validation
score.
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The right column shows the expected true cost and its LOOCV estimates for uLSIF in the same
manner.

The graphs show that overall CV gives reasonably good approximations of the expected cost,
although CV for LSIF with smallλ and smallσ is rather inaccurate due to numerical problems—the
solution path of LSIF is computed fromλ = ∞ to λ = 0, and the numerical error is accumulated as
the tracking process approaches toλ = 0. This phenomenon seems problematic whenσ is small.

4.5 Difference between LSIF and uLSIF

In Section 3.3, we analyzed the approximation error of uLSIF against LSIF. Here we numerically
investigate the behavior of the approximation error (26) as well as the norm bound (28) and the
bridge bound (31). We set the number of training and test samples atntr = 200 andnte = 1000,
respectively. The number of template points in the Gaussian kernel model (22) is set atb = 100.
The centers of the kernel functions are randomly chosen from the test points (see Section 4.2).

Figure 7 depicts the true approximation error as well as its upper bounds as functions of the reg-
ularization parameterλ; λ is varied from 0.001 to 10 and the three Gaussian widthsσ = 0.1,0.5,1.0
are tested. The graphs show that whenλ andσ are large, the approximation error tends to be small;
this is in good agreement with the theoretical analysis given in Section 3.3. The bridge bound is
fairly tight in the entire range and is sharper than the norm bound except whenσ is small andλ is
large.

4.6 Summary

Through the numerical examples, we overall found that LSIF and uLSIF give qualitatively similar
results. However, the computation of the solution-path tracking algorithm for LSIF tends to be
numerically unstable, which can result in unreliable model selection performance. On the other
hand, only a system of linear equations needs to be solved in uLSIF, which turned out to be much
more stable than LSIF. Thus, uLSIF would be practically more reliable than LSIF.

Based on the above findings, we will focus on uLSIF in the rest of this paper.

5. Relation to Existing Methods

In this section, we discuss the characteristics of existing approaches in comparison with the pro-
posed methods.

5.1 Kernel Density Estimator

Thekernel density estimator(KDE) is a non-parametric technique to estimate a probability density
function p(x) from its i.i.d. samples{xk}nk=1. For the Gaussian kernel (21), KDE is expressed as

p̂(x) =
1

ntr(2πσ2)d/2

n

∑
k=1

Kσ(x,xk).

The performance of KDE depends on the choice of the kernel widthσ. The kernel widthσ can
be optimized bylikelihood cross-validation(LCV) as follows (Ḧardle et al., 2004): First, divide
the samples{xi}ni=1 into R disjoint subsets{Xr}Rr=1. Then obtain a density estimatêpXk(x) from
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(c) σ = 1.0.

Figure 7: The approximation error of uLSIF against LSIF as functions of the regularization param-
eterλ for different Gaussian widthσ. Its upper bounds are also plotted in the graphs.

{Xr}r 6=k (i.e., withoutXk) and compute its log-likelihood forXk:

1
|Xk| ∑

x∈Xk

log p̂Xk(x).

Repeat this procedure forr = 1,2, . . . ,Rand choose the value ofσ such that the average of the above
hold-out log-likelihood over allr is maximized. Note that the average hold-out log-likelihood is an
almost unbiased estimate of the Kullback-Leibler divergence fromp(x) to p̂(x), up to an irrelevant
constant.

KDE can be used for importance estimation by first obtaining density estimatorsp̂tr(x) and
p̂te(x) separately from{xtr

i }ntr
i=1 and {xte

j }nte
j=1, and then estimating the importance bŷw(x) =

p̂te(x)/p̂tr(x). A potential limitation of this approach is that KDE suffers from thecurse of dimen-
sionality(Vapnik, 1998; Ḧardle et al., 2004), that is, the number of samples needed to maintain the
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same approximation quality grows exponentially as the dimension of the domain increases. This is
critical when the number of available samples is limited. Therefore, the KDE-based approach may
not be reliable in high-dimensional problems.

5.2 Kernel Mean Matching

The kernel mean matching(KMM) method allows us to directly obtain an estimate of the impor-
tance values at training points without going through density estimation (Huang et al., 2007). The
basic idea of KMM is to find̂w(x) such that the mean discrepancy between nonlinearly transformed
samples drawn frompte(x) andptr(x) is minimized in auniversal reproducing kernel Hilbert space
(Steinwart, 2001). The Gaussian kernel (21) is an example of kernels that induce universal repro-
ducing kernel Hilbert spaces and it has been shown that the solution of the following optimization
problem agrees with the true importance:

min
w(x)

∥∥∥∥
Z

Kσ(x, ·)pte(x)dx−
Z

Kσ(x, ·)w(x)ptr(x)dx

∥∥∥∥
2

H

subject to
Z

w(x)ptr(x)dx= 1 and w(x)≥ 0,

where‖ ·‖H denotes the norm in the Gaussian reproducing kernel Hilbert space andKσ(x,x′) is the
Gaussian kernel (21).

An empirical version of the above problem is reduced to the following quadratic program:

min
{wi}ntr

i=1

[
1
2

ntr

∑
i,i ′=1

wiwi′Kσ(xtr
i ,xtr

i′ )−
ntr

∑
i=1

wiκi

]

subject to

∣∣∣∣∣
ntr

∑
i=1

wi−ntr

∣∣∣∣∣≤ ntrε and 0≤ w1,w2, . . . ,wntr ≤ B,

where

κi =
ntr

nte

nte

∑
j=1

Kσ(xtr
i ,xte

j ).

B (≥ 0) and ε (≥ 0) are tuning parameters that control the regularization effects. The solution
{ŵi}ntr

i=1 is an estimate of the importance at the training points{xtr
i }ntr

i=1.
Since KMM does not involve density estimation, it is expected to work well even in high dimen-

sional cases. However, the performance is dependent on the tuning parametersB, ε, andσ, and they
cannot be simply optimized, for example, by CV since estimates of the importance are available
only at the training points. A popular heuristic is to use the median distance between samples as
the Gaussian widthσ, which is shown to be useful (Schölkopf and Smola, 2002; Song et al., 2007).
However, there seems no strong justification for this heuristic. For the choice ofε, a theoretical
result given in Huang et al. (2007) could be used as guidance, although it is still hard to determine
the best value ofε in practice.

5.3 Logistic Regression

Another approach to directly estimating the importance is to use a probabilistic classifier. Let us
assign a selector variableη =−1 to training samples andη = 1 to test samples, that is, the training
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and test densities are written as

ptr(x) = p(x|η =−1),

pte(x) = p(x|η = 1).

Note thatη is regarded as a random variable.
Application of the Bayes theorem yields that the importance can be expressed in terms ofη as

follows (Qin, 1998; Cheng and Chu, 2004; Bickel et al., 2007):

w(x) =
p(η =−1)

p(η = 1)

p(η = 1|x)
p(η =−1|x) .

The probability ratio of test and training samples may be simply estimated by the ratio of the num-
bers of samples:

p(η =−1)

p(η = 1)
≈ ntr

nte
.

The conditional probabilityp(η|x) could be approximated by discriminating test samples from train-
ing samples using alogistic regression(LogReg) classifier, whereη plays the role of a class variable.
Below we briefly explain the LogReg method.

The LogReg classifier employs a parametric model of the following form for expressing the
conditional probabilityp(η|x):

p̂(η|x) =
1

1+exp(−η∑m
ℓ=1 ζℓφℓ(x))

,

wherem is the number of basis functions and{φℓ(x)}mℓ=1 are fixed basis functions. The parameterζ
is learned so that the negative regularized log-likelihood is minimized:

ζ̂ = argmin
ζ

[
ntr

∑
i=1

log

(
1+exp

(
m

∑
ℓ=1

ζℓφℓ(x
tr
i )

))

+
nte

∑
j=1

log

(
1+exp

(
−

m

∑
ℓ=1

ζℓφℓ(x
te)

))
+λζ⊤ζ

]
.

Since the above objective function is convex, the global optimal solution can be obtained by standard
nonlinear optimization methods such as Newton’s method, the conjugate gradient method, and the
BFGS method (Minka, 2007). Then the importance estimate is given by

ŵ(x) =
ntr

nte
exp

(
m

∑
ℓ=1

ζℓφℓ(x)

)
. (34)

An advantage of the LogReg method is that model selection (that is, the choice of the basis
functions{φℓ(x)}mℓ=1 as well as the regularization parameterλ) is possible by standard CV since the
learning problem involved above is a standard supervised classification problem.
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5.4 Kullback-Leibler Importance Estimation Procedure

TheKullback-Leibler importance estimation procedure(KLIEP) (Sugiyama et al., 2008a) also di-
rectly gives an estimate of the importance function without going through density estimation by
matching the two distributions in terms of the Kullback-Leibler divergence (Kullback and Leibler,
1951).

Let us model the importancew(x) by the linear model (1). An estimate of the test densitypte(x)
is given by using the model̂w(x) as

p̂te(x) = ŵ(x)ptr(x).

In KLIEP, the parametersα are determined so that the Kullback-Leibler divergence frompte(x) to
p̂te(x) is minimized:

KL[ pte(x)‖p̂te(x)] =
Z

D
pte(x) log

pte(x)
ŵ(x)ptr(x)

dx

=
Z

D
pte(x) log

pte(x)
ptr(x)

dx−
Z

D
pte(x) logŵ(x)dx. (35)

The first term is a constant, so it can be safely ignored. Sincep̂te(x) (= ŵ(x)ptr(x)) is a probability
density function, it should satisfy

1 =
Z

D
p̂te(x)dx=

Z

D
ŵ(x)ptr(x)dx. (36)

Then the KLIEP optimization problem is given by replacing the expectations in Eqs. (35) and (36)
with empirical averages as follows:

max
{αℓ}bℓ=1

[
nte

∑
j=1

log

(
b

∑
ℓ=1

αℓϕℓ(x
te
j )

)]

subject to
b

∑
ℓ=1

αℓ

(
ntr

∑
i=1

ϕℓ(x
tr
i )

)
= ntr and α1,α2, . . . ,αb≥ 0.

This is a convex optimization problem and the global solution—which tends to be sparse (Boyd and
Vandenberghe, 2004)—can be obtained, for example, by simply performing gradient ascent and
feasibility satisfaction iteratively. Model selection of KLIEP is possible by LCV.

Properties of KLIEP-type algorithms have been theoretically investigated in Nguyen et al. (2008)
and Sugiyama et al. (2008b) (see also Qin, 1998; Cheng and Chu, 2004). Note that the importance
model of KLIEP is the linear model (1), while that of LogReg is the log-linear model (34). A variant
of KLIEP for log-linear models has been studied in Tsuboi et al. (2008).

5.5 Discussions

Table 1 summarizes properties of proposed and existing methods.
KDE is efficient in computation since no optimization is involved, and model selection is pos-

sible by LCV. However, KDE may suffer from the curse of dimensionality due to the difficulty of
density estimation in high dimensions.
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Methods
Density

estimation
Model

selection
Optimization

Out-of-sample
prediction

KDE Necessary Available Analytic Possible
KMM Not necessary Not available Convex quadratic program Not possible

LogReg Not necessary Available Convex non-linear Possible
KLIEP Not necessary Available Convex non-linear Possible
LSIF Not necessary Available Convex quadratic program Possible
uLSIF Not necessary Available Analytic Possible

Table 1: Relation between proposed and existing methods.

KMM can potentially overcome the curse of dimensionality by directly estimating the impor-
tance. However, there is no objective model selection method. Therefore, model parameters such as
the Gaussian width need to be determined by hand, which is highly unreliable unless we have strong
prior knowledge. Furthermore, the computation of KMM is rather demanding since a quadratic pro-
gramming problem has to be solved.

LogReg and KLIEP also do not involve density estimation, but different from KMM, they give
an estimate the entire importance function, not only the values of the importance at training points.
Therefore, the values of the importance at unseen points can be estimated by LogReg and KLIEP.
This feature is highly useful since it enables us to employ CV for model selection, which is a sig-
nificant advantage over KMM. However, LogReg and KLIEP are computationally rather expensive
since non-linear optimization problems have to be solved. Note that the LogReg method is slightly
different in motivation from other methods, but has some similarity in computation and implemen-
tation, for example, the LogReg method also involves a kernel smoother.

The proposed LSIF method is qualitatively similar to LogReg and KLIEP, that is, it can avoid
density estimation, model selection is possible, and non-linear optimization is involved. LSIF is
advantageous over LogReg and KLIEP in that it is equipped with a regularization path tracking
algorithm. Thanks to this, model selection of LSIF is computationally much more efficient than
LogReg and KLIEP. However, the regularization path tracking algorithm tends to be numerically
unstable.

The proposed uLSIF method inherits good properties of existing methods such as no density
estimation involved and a build-in model selection method equipped. In addition to these preferable
properties, the solution of uLSIF can be computed in an efficient and numerically stable manner.
Furthermore, thanks to the availability of the closed-form solution of uLSIF, the LOOCV score can
be analytically computed without repeating hold-out loops, which highly contributes to reducing
the computation time in the model selection phase.

In the next section, we experimentally show that uLSIF is computationally more efficient than
existing direct importance estimation methods, while its estimation accuracy is comparable to the
best existing methods.

6. Experiments

In this section, we compare the experimental performance of the proposed and existing methods.
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6.1 Importance Estimation

Let the dimension of the domain bed and

ptr(x) =N (x;(0,0, . . . ,0)⊤, Id),

pte(x) =N (x;(1,0, . . . ,0)⊤, Id).

The task is to estimate the importance at training points:

wi = w(xtr
i ) =

pte(xtr
i )

ptr(xtr
i )

for i = 1,2, . . . ,ntr.

We compare the following methods:

KDE(CV): The Gaussian kernel (21) is used, where the kernel widths of the training and test
densities are separately optimized based on 5-fold LCV.

KMM(med): The performance of KMM is dependent onB, ε, andσ. We setB = 1000 andε =
(
√

ntr−1)/
√

ntr following the original paper (Huang et al., 2007), and the Gaussian widthσ is
set at the median distance between samples within the training set and the test set (Schölkopf
and Smola, 2002; Song et al., 2007).

LogReg(CV): The Gaussian kernel model (22) are used as basis functions. The kernel widthσ and
the regularization parameterλ are chosen based on 5-fold CV.1

KLIEP(CV): The Gaussian kernel model (22) is used. The kernel widthσ is selected based on
5-fold LCV.

uLSIF(CV): The Gaussian kernel model (22) is used. The kernel widthσ and the regularization
parameterλ are determined based on LOOCV.

All the methods are implemented using theMATLABR© environment, where theCPLEXR© opti-
mizer is used for solving quadratic programs in KMM and theLIBLINEARimplementation is used
for LogReg (Lin et al., 2007).

We fixed the number of test points atnte = 1000 and consider the following two setups for the
numberntr of training samples and the input dimensionalityd:

(a) ntr is fixed atntr = 100 andd is changed asd = 1,2, . . . ,20,

(b) d is fixed atd = 10 andntr is changed asntr = 50,60, . . . ,150.

We run the experiments 100 times for eachd, eachntr, and each method, and evaluate the quality of
the importance estimates{ŵi}ntr

i=1 by thenormalized mean squared error(NMSE):

NMSE=
1
ntr

ntr

∑
i=1

(
ŵi

∑ntr
i′=1 ŵi′

− wi

∑ntr
i′=1wi′

)2

.

1. In Sugiyama et al. (2008b) where KLIEP has been proposed, the performance of LogReg has been experimentally
investigated in the same setup. In that paper, however, LogReg was not regularized since KLIEP was not also
regularized. On the other hand, we use a regularized LogReg method and choose the regularization parameter in
addition to the Gaussian kernel width by CV here. Thanks to the regularization effect, the results of LogReg in the
current paper tends to be better than that reported in Sugiyama et al. (2008b).
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In practice, the scale of the importance is not significant and the relative magnitude amongwi is
important. Thus the above NMSE would be a suitable error metric for evaluating the performance
of each method.

NMSEs averaged over 100 trials (a) as a function of input dimensionalityd and (b) as a function
of the training sample sizentr are plotted in log scale in Figure 8. Error bars are omitted for clear
visibility—instead, the best method in terms of the mean error and comparable ones based on the
t-test at the significance level 1% are indicated by ‘◦’; the methods with significant difference from
the best methods are indicated by ‘×’.

Figure 8(a) shows that the error of KDE(CV) sharply increases as the input dimensionality
grows, while LogReg, KLIEP, and uLSIF tend to give much smaller errors than KDE. This would
be the fruit of directly estimating the importance without going through density estimation. KMM
tends to perform poorly, which is caused by an inappropriate choice of the Gaussian kernel width.
On the other hand, model selection in LogReg, KLIEP, and uLSIF seems to work quite well. Fig-
ure 8(b) shows that the errors of all methods tend to decrease as the number of training samples
grows. Again LogReg, KLIEP, and uLSIF tend to give much smaller errors than KDE and KMM.

Next we investigate the computation time. Each method has a different model selection strategy,
that is, KMM does not involve CV, KDE and KLIEP involve CV over the kernel width, and LogReg
and uLSIF involve CV over both the kernel width and the regularization parameter. Thus the naive
comparison of the total computation time is not so meaningful. For this reason, we first investigate
the computation time of each importance estimation method after the model parameters are fixed.

The average CPU computation time over 100 trials are summarized in Figure 9. Figure 9(a)
shows that the computation time of KDE, KLIEP, and uLSIF is almost independent of the input
dimensionality, while that of KMM and LogReg is rather dependent on the input dimensionality.
Note that LogReg ford≤ 3 is slow due to some convergence problem of the LIBLINEAR package.
Among them, the proposed uLSIF is one of the fastest methods. Figure 9(b) shows that the compu-
tation time of LogReg, KLIEP, and uLSIF is nearly independent of the number of training samples,
while that of KDE and KMM sharply increase as the number of training samples increases.

Both LogReg and uLSIF have high accuracy and their computation time after model selection
is comparable. Finally, we compare the entire computation time of LogReg and uLSIF including
CV, which is summarized in Figure 10. We note that the Gaussian widthσ and the regularization
parameterλ are chosen over the 9×9 grid in this experiment for both LogReg and uLSIF. Therefore,
the comparison of the entire computation time is fair. Figures 10(a) and 10(b) show that uLSIF is
approximately 5 times faster than LogReg.

Overall, uLSIF is shown to be comparable to the best existing method (LogReg) in terms of the
accuracy, but is computationally more efficient than LogReg.

6.2 Covariate Shift Adaptation in Regression and Classification

Next, we illustrate how the importance estimation methods could be used incovariate shift adap-
tation (Shimodaira, 2000; Zadrozny, 2004; Sugiyama and Müller, 2005; Huang et al., 2007; Bickel
and Scheffer, 2007; Bickel et al., 2007; Sugiyama et al., 2007). Covariate shift is a situation in
supervised learning where the input distributions change between the training and test phase but the
conditional distribution of outputs given inputs remains unchanged. Under covariate shift, standard
learning techniques such as maximum likelihood estimation or cross-validation are biased—the bias

1420



A L EAST-SQUARESAPPROACH TODIRECT IMPORTANCEESTIMATION

5 10 15 20
10

−6

10
−5

10
−4

10
−3

A
ve

ra
ge

 N
M

S
E

 o
ve

r 
10

0 
T

ria
ls

 (
in

 L
og

 S
ca

le
)

d (Input Dimension)

 

 
KDE(CV)
KMM(med)
LogReg(CV)
KLIEP(CV)
uLSIF(CV)

(a) When input dimensionality is changed
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Figure 8: NMSEs averaged over 100 trials in log scale for the artificial data set. Error bars are
omitted for clear visibility. Instead, the best method in terms of the mean error and
comparable ones based on thet-testat the significance level 1% are indicated by ‘◦’; the
methods with significant difference from the best methods are indicated by ‘×’.
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Figure 9: Average computation time (after model selection) over 100 trials for the artificial data set.
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Figure 10: Average computation time over 100 trials for the artificial data set (including model
selection of the Gaussian widthσ and the regularization parameterλ over the 9× 9
grid).
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caused by covariate shift can be asymptotically canceled by weighting the loss function according
to the importance.

In addition to training input samples{xtr
i }ntr

i=1 drawn from a training input densityptr(x) and test
input samples{xte

j }nte
j=1 drawn from a test input densitypte(x), suppose that we are given training

outputsamples{ytr
i }ntr

i=1 at the training input points{xtr
i }ntr

i=1. The task is to predict the outputs for
test inputs{xte

j }nte
j=1 based on the input-output training samples{(xtr

i ,ytr
i )}ntr

i=1.
We use the following kernel model for function learning:

f̂ (x;θ) =
t

∑
ℓ=1

θℓKh(x,mℓ),

whereKh(x,x′) is the Gaussian kernel (21) andmℓ is a template point randomly chosen from{xte
j }nte

j=1
without replacement. We set the number of kernels att = 50. We learn the parameterθ by impor-
tance weighted regularized least-squares(IWRLS) (Evgeniou et al., 2000; Sugiyama and Müller,
2005):

θ̂IWRLS≡ argmin
θ

[
ntr

∑
i=1

ŵ(xtr
i )
(

f̂ (xtr
i ;θ)−ytr

i

)2
+ γ‖θ‖2

]
. (37)

It is known that IWRLS is consistent when the true importancew(xtr
i ) is used as weights—unweighted

RLS is not consistent due to covariate shift, given that the true learning target functionf (x) is not
realizable by the model̂f (x) (Shimodaira, 2000).

The solution̂θIWRLS is analytically given by

θ̂IWRLS = (K⊤ŴK+ γIb)
−1K⊤Ŵytr,

where

Ki,ℓ = Kh(x
tr
i ,mℓ),

Ŵ = diag
(
ŵ(xtr

1), ŵ(xtr
2), . . . , ŵ(xtr

ntr
)
)
,

ytr = (ytr
1 ,ytr

2 , . . . ,ytr
ntr

)⊤.

diag(a,b, . . . ,c) denotes the diagonal matrix with the diagonal elementsa,b, . . . ,c.
The kernel widthh and the regularization parameterγ in IWRLS (37) are chosen byimportance

weighted CV(IWCV) (Sugiyama et al., 2007). More specifically, we first divide the training samples
{ztr

i | ztr
i = (xtr

i ,ytr
i )}ntr

i=1 into R disjoint subsets{Ztr
r }Rr=1. Then a functionf̂r(x) is learned using

{Ztr
j } j 6=r by IWRLS and its mean test error for the remaining samplesZtr

r is computed:

1
|Ztr

r | ∑
(x,y)∈Ztr

r

ŵ(x)loss
(

f̂r(x),y
)

,

where

loss(ŷ,y) =

{
(ŷ−y)2 (Regression),
1
2(1−sign{ŷy}) (Classification).

We repeat this procedure forr = 1,2, . . . ,R and choose the kernel widthh and the regularization
parameterγ so that the average of the above mean test error over allr is minimized. We set the
number of folds in IWCV atR= 5. IWCV is shown to be an (almost) unbiased estimator of the

1424



A L EAST-SQUARESAPPROACH TODIRECT IMPORTANCEESTIMATION

Data Uniform KDE
(CV)

KMM
(med)

LogReg
(CV)

KLIEP
(CV)

uLSIF
(CV)

kin-8fh 1.00(0.34) 1.22(0.52) 1.55(0.39) 1.31(0.39) 0.95(0.31) 1.02(0.33)
kin-8fm 1.00(0.39) 1.12(0.57) 1.84(0.58) 1.38(0.57) 0.86(0.35) 0.88(0.39)
kin-8nh 1.00(0.26) 1.09(0.20) 1.19(0.29) 1.09(0.19) 0.99(0.22) 1.02(0.18)
kin-8nm 1.00(0.30) 1.14(0.26) 1.20(0.20) 1.12(0.21) 0.97(0.25) 1.04(0.25)

abalone 1.00(0.50) 1.02(0.41) 0.91(0.38) 0.97(0.49) 0.94(0.67) 0.96(0.61)
image 1.00(0.51) 0.98(0.45) 1.08(0.54) 0.98(0.46) 0.94(0.44) 0.98(0.47)

ringnorm 1.00(0.04) 0.87(0.04) 0.87(0.04) 0.95(0.08) 0.99(0.06) 0.91(0.08)
twonorm 1.00(0.58) 1.16(0.71) 0.94(0.57) 0.91(0.61) 0.91(0.52) 0.88(0.57)
waveform 1.00(0.45) 1.05(0.47) 0.98(0.31) 0.93(0.32) 0.93(0.34) 0.92(0.32)

Average 1.00(0.38) 1.07(0.40) 1.17(0.37) 1.07(0.37) 0.94(0.35) 0.96(0.36)

Comp. time — 0.82 3.50 3.27 2.23 1.00

Table 2: Mean test error averaged over 100 trials for covariate shift adaptation in regression and
classification. The numbers in the brackets are the standard deviation. All the error values
are normalized by that of ‘Uniform’ (uniform weighting, or equivalently no importance
weighting). For each data set, the best method in terms of the mean error and comparable
ones based on theWilcoxon signed rank testat the significance level 1% are described in
bold face. The upper half corresponds to regression data sets taken from DELVE (Ras-
mussen et al., 1996), while the lower half correspond to classification data sets taken from
IDA (Rätsch et al., 2001). All the methods are implemented using theMATLABR© environ-
ment, where theCPLEXR© optimizer is used for solving quadratic programs in KMM and
theLIBLINEARimplementation is used for LogReg (Lin et al., 2007).

generalization error, while unweighted CV with misspecified models is biased due to covariate shift
(Zadrozny, 2004; Sugiyama et al., 2007).

The data sets provided by DELVE (Rasmussen et al., 1996) and IDA (Rätsch et al., 2001)
are used for performance evaluation. Each data set consists of input/output samples{(xk,yk)}nk=1.
We normalize all the input samples{xk}nk=1 into [0,1]d and choose the test samples{(xte

j ,y
te
j )}nte

j=1
from the pool{(xk,yk)}nk=1 as follows. We randomly choose one sample(xk,yk) from the pool and

accept this with probability min(1,4(x(c)
k )2), wherex(c)

k is thec-th element ofxk andc is randomly
determined and fixed in each trial of the experiments. Then we removexk from the pool regardless
of its rejection or acceptance, and repeat this procedure untilnte samples are accepted. We choose
the training samples{(xtr

i ,ytr
i )}ntr

i=1 uniformly from the rest. Thus, in this experiment, the test input

density tends to be lower than the training input density whenx(c)
k is small. We set the number of

samples atntr = 100 andnte = 500 for all data sets. Note that we only use{(xtr
i ,ytr

i )}ntr
i=1 and{xte

j }nte
j=1

for training regressors or classifiers; the test output values{yte
j }nte

j=1 are used only for evaluating the
generalization performance.

We run the experiments 100 times for each data set and evaluate themean test error:

1
nte

nte

∑
j=1

loss
(

f̂ (xte
j ),y

te
j

)
.
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The results are summarized in Table 2, where ‘Uniform’ denotes uniform weights (or equivalently,
no importance weight). The numbers in the brackets are the standard deviation. All the error values
are normalized so that the mean error of Uniform is one. For each data set, the best method in terms
of the mean error and comparable ones based on theWilcoxon signed rank testat the significance
level 1% are described in bold face. The upper half of the table corresponds to regression data sets
taken from DELVE (Rasmussen et al., 1996), while the lower half correspond to classification data
sets taken from IDA (R̈atsch et al., 2001). All the methods are implemented using theMATLABR©

environment, where theCPLEXR© optimizer is used for solving quadratic programs in KMM and
theLIBLINEARimplementation is used for LogReg (Lin et al., 2007).

The table shows that the generalization performance of uLSIF tends to be better than that of
Uniform, KDE, KMM, and LogReg, while it is comparable to the best existing method (KLIEP).
The mean computation time over 100 trials is described in the bottom row of the table, where the
value is normalized so that the computation time of uLSIF is one. This shows that the computation
time of uLSIF is much shorter than KLIEP. Thus, uLSIF is overall shown to be useful in covariate
shift adaptation.

6.3 Outlier Detection

Finally, we apply importance estimation methods in outlier detection.

Here, we consider an outlier detection problem of finding irregular samples in a data set (“eval-
uation data set”) based on another data set (“model data set”) that only contains regular samples.
Defining the importance over two sets of samples, we can see that the importance values for regular
samples are close to one, while those for outliers tend to be significantly deviated from one. Thus
the importance values could be used as an index of the degree of outlyingness in this scenario. Since
the evaluation data set has wider support than the model data set, we regard the evaluation data set
as the training set{xtr

i }ntr
i=1 (that is, the denominator in the importance) and the model data set as

the test set{xte
j }nte

j=1 (that is, the numerator in the importance). Then outliers tend to have smaller
importance values (that is, close to zero).

We again test KMM(med), LogReg(CV), KLIEP(CV), and uLSIF(CV) for importance estima-
tion; in addition, we include native outlier detection methods for comparison purposes. The outlier
detection problem that the native methods used below solve is to find outliers in a single data set
{xk}nk=1—the native methods can be employed in the current scenario just by finding outliers from
all samples:

{xk}nk=1 = {xtr
i }ntr

i=1∪{xte
j }nte

j=1.

One-class support vector machine (OSVM):Thesupport vector machine(SVM) (Vapnik, 1998;
Scḧolkopf and Smola, 2002) is one of the most successful classification algorithms in machine
learning. The core idea of SVM is to separate samples in different classes by the maximum
margin hyperplane in a kernel-induced feature space.

OSVM is an extension of SVM to outlier detection (Schölkopf et al., 2001). The basic idea
of OSVM is to separate data samples{xk}nk=1 into outliers and inliers by a hyperplane in a
Gaussian reproducing kernel Hilbert space. More specifically, the solution of OSVM is given
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as the solution of the following convex quadratic programming problem:

min
{wk}nk=1

1
2

n

∑
k,k′=1

wkwk′Kσ(xk,xk′)

subject to
n

∑
k=1

wk = 1 and 0≤ w1,w2, . . . ,wn≤
1

νn
,

whereν (0≤ ν≤ 1) is the maximum fraction of outliers.

We use the inverse distance of a sample from the separating hyperplane as an outlier score.
The OSVM solution is dependent on the outlier ratioν and the Gaussian kernel widthσ, and
there seems to be no systematic method to determine the values of these tuning parameters.
Here we use the median distance between samples as the Gaussian width, which is a popular
heuristic (Scḧolkopf and Smola, 2002; Song et al., 2007). The value ofν is fixed at the true
output ratio, that is, the ideal optimal value. Thus the simulation results below should be
slightly in favor of OSVM.

Local outlier factor (LOF): LOF is the score to detect a local outlier which lies relatively far from
the nearest dense region (Breunig et al., 2000). For a prefixed natural numberk, the LOF value
of a samplex is defined by

LOFR(x) =
1
k

k

∑
i=1

imdk(nearesti(x))
imdk(x)

,

where nearesti(x) denotes thei-th nearest neighbor ofx and imdk(x) denotes the inverse mean
distance fromx to itsk nearest neighbors:

imdk(x) =
1

1
k ∑k

i=1 ‖x−nearesti(x)‖
.

If xalone is apart from a cloud of points, imdk(x) tends to become smaller than than imdk(nearesti(x))
for all i. Then the LOF value gets large and therefore such a point is regarded as an outlier.
The performance of LOF depends on the choice of the parameterk and there seems no sys-
tematic way to find an appropriate value ofk. Here we test several different values ofk.

Kernel density estimator (KDE’): A naive density estimation of all data samples{xk}nk=1 can also
be used for outlier detection since the density value itself could be regarded as an outlier score.
We use KDE with the Gaussian kernel (21) for density estimation, where the kernel width is
determined based on 5-fold LCV.

All the methods are implemented using the R environment—we use theksvmroutine in the
kernlabpackage for OSVM (Karatzoglou et al., 2004) and thelofactor routine in thedpreppackage
for LOF (Fernandez, 2005).

The data sets provided by IDA (Rätsch et al., 2001) are used for performance evaluation. These
data sets are binary classification data sets consisting of positive/negative and training/test samples.
We allocate all positive training samples for the “model” set, while all positive test samples and a
fractionρ (= 0.01,0.02,0.05)of negative test samples are assigned in the “evaluation” set. Thus,
we regard the positive samples as regular and the negative samples as irregular.
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In the evaluation of the performance of outlier detection methods, it is important to take into
account both the detection rate (the amount of true outliers an outlier detection algorithm can find)
and the detection accuracy (the amount of true inliers that an outlier detection algorithm misjudges
as outliers). Since there is a trade-off between the detection rate and the detection accuracy, we
adopt the area under the ROC curve (AUC) as our error metric (Bradley, 1997).

The mean AUC values over 20 trials as well as the computation time are summarized in Table 3,
showing that uLSIF works fairly well. KLIEP works slightly better than uLSIF, but uLSIF is com-
putationally much more efficient. LogReg overall works reasonably well, but it performs poorly for
some data sets and the average AUC performance is not as good as uLSIF or KLIEP. KMM and
OSVM are not comparable to uLSIF in AUC and they are computationally inefficient. Note that we
also tested KMM and OSVM with several different Gaussian widths and experimentally found that
the heuristic of using the median sample distance as the Gaussian kernel width works reasonably
well in this experiment. Thus the AUC values of KMM and OSVM are close to optimal. LOF with
largek is shown to work well, although it is not clear whether the heuristic of simply using largek
is always appropriate or not. The computational cost of LOF is high since nearest neighbor search
is computationally expensive. KDE’ works reasonably well, but its performance is not as good as
uLSIF and KLIEP.

Overall, uLSIF is shown to work well with low computational costs.

7. Conclusions

The importance is useful in various machine learning scenarios such as covariate shift adaptation
and outlier detection. In this paper, we proposed a new method of importance estimation that can
avoid solving a substantially more difficult task of density estimation. We formulated the importance
estimation problem as least-squares function fitting and casted the optimization problem as a convex
quadratic program (we referred to it as LSIF). We theoretically elucidated the convergence property
of LSIF and showed that the entire regularization path of LSIF can be efficiently computed based
on a parametric optimization technique. We further developed an approximation algorithm (we
called it uLSIF), which allows us to obtain the closed-form solution. We showed that the leave-one-
out cross-validation score can be computed analytically for uLSIF—this makes the computation of
uLSIF highly efficient. We carried out extensive simulations in covariate shift adaptation and outlier
detection, and experimentally confirmed that the proposed uLSIF is computationally more efficient
than existing approaches, while the accuracy of uLSIF is comparable to the best existing methods.
Thanks to the low computational cost, uLSIF would be highly scalability to large data sets, which
is very important in practical applications.

We have given convergence proofs for LSIF and uLSIF. A possible future direction to pursue
along this line is to show the convergence of LSIF and uLSIF in non-parametric cases, for example,
following Nguyen et al. (2008) and Sugiyama et al. (2008b). We are currently exploring various
possible applications of important estimation methods beyond covariate shift adaptation or outlier
detection, for example, feature selection, conditional distribution estimation, independent compo-
nent analysis, and dimensionality reduction—we believe that importance estimation could be used
as a new versatile tool in statistical machine learning.
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Data uLSIF KLIEP LogReg KMM OSVM LOF KDE’
Name ρ (CV) (CV) (CV) (med) (med) k = 5 k = 30 k = 50 (CV)

banana
0.01 0.851 0.815 0.447 0.578 0.360 0.838 0.915 0.919 0.934
0.02 0.858 0.824 0.428 0.644 0.412 0.813 0.918 0.920 0.927
0.05 0.869 0.851 0.435 0.761 0.467 0.786 0.907 0.909 0.923

b-cancer
0.01 0.463 0.480 0.627 0.576 0.508 0.546 0.488 0.463 0.400
0.02 0.463 0.480 0.627 0.576 0.506 0.521 0.445 0.428 0.400
0.05 0.463 0.480 0.627 0.576 0.498 0.549 0.480 0.452 0.400

diabetes
0.01 0.558 0.615 0.599 0.574 0.563 0.513 0.403 0.390 0.425
0.02 0.558 0.615 0.599 0.574 0.563 0.526 0.453 0.434 0.425
0.05 0.532 0.590 0.636 0.547 0.545 0.536 0.461 0.447 0.435

f-solar
0.01 0.416 0.485 0.438 0.494 0.522 0.480 0.441 0.385 0.378
0.02 0.426 0.456 0.432 0.480 0.550 0.442 0.406 0.343 0.374
0.05 0.442 0.479 0.432 0.532 0.576 0.455 0.417 0.370 0.346

german
0.01 0.574 0.572 0.556 0.529 0.535 0.526 0.559 0.552 0.561
0.02 0.574 0.572 0.556 0.529 0.535 0.553 0.549 0.544 0.561
0.05 0.564 0.555 0.540 0.532 0.530 0.548 0.571 0.555 0.547

heart
0.01 0.659 0.647 0.833 0.623 0.681 0.407 0.659 0.739 0.638
0.02 0.659 0.647 0.833 0.623 0.678 0.428 0.668 0.746 0.638
0.05 0.659 0.647 0.833 0.623 0.681 0.440 0.666 0.749 0.638

satimage
0.01 0.812 0.828 0.600 0.813 0.540 0.909 0.930 0.896 0.916
0.02 0.829 0.847 0.632 0.861 0.548 0.785 0.919 0.880 0.898
0.05 0.841 0.858 0.715 0.893 0.536 0.712 0.895 0.868 0.892

splice
0.01 0.713 0.748 0.368 0.541 0.737 0.765 0.778 0.768 0.845
0.02 0.754 0.765 0.343 0.588 0.744 0.761 0.793 0.783 0.848
0.05 0.734 0.764 0.377 0.643 0.723 0.764 0.785 0.777 0.849

thyroid
0.01 0.534 0.720 0.745 0.681 0.504 0.259 0.111 0.071 0.256
0.02 0.534 0.720 0.745 0.681 0.505 0.259 0.111 0.071 0.256
0.05 0.534 0.720 0.745 0.681 0.485 0.259 0.111 0.071 0.256

titanic
0.01 0.525 0.534 0.602 0.502 0.456 0.520 0.525 0.525 0.461
0.02 0.496 0.498 0.659 0.513 0.526 0.492 0.503 0.503 0.472
0.05 0.526 0.521 0.644 0.538 0.505 0.499 0.512 0.512 0.433

twonorm
0.01 0.905 0.902 0.161 0.439 0.846 0.812 0.889 0.897 0.875
0.02 0.896 0.889 0.197 0.572 0.821 0.803 0.892 0.901 0.858
0.05 0.905 0.903 0.396 0.754 0.781 0.765 0.858 0.874 0.807

waveform
0.01 0.890 0.881 0.243 0.477 0.861 0.724 0.887 0.889 0.861
0.02 0.901 0.890 0.181 0.602 0.817 0.690 0.887 0.890 0.861
0.05 0.885 0.873 0.236 0.757 0.798 0.705 0.847 0.874 0.831

Average 0.661 0.685 0.530 0.608 0.596 0.594 0.629 0.622 0.623

Comp. time 1.00 11.7 5.35 751 12.4 85.5 8.70

Table 3: Mean AUC values for outlier detection over 20 trials for the benchmark data sets. All the
methods are implemented using the R environment, where quadratic programs in KMM
are solved by theipop optimizer (Karatzoglou et al., 2004), theksvmroutine is used for
OSVM (Karatzoglou et al., 2004), and thelofactor routine is used for LOF (Fernandez,
2005).

1429



KANAMORI , HIDO AND SUGIYAMA

Acknowledgments

The authors wish to thank Issei Sato for fruitful discussion and helpful comments. The authors
would also like to thank the anonymous referees whose comments helped to improve the paper
further. This work was supported by MEXT (20680007), SCAT, and AOARD.

Appendix A. Existence of the Inverse Matrix ofĜ

Here we prove Lemma 1.
Let us consider the following system of linear equations:

(
Ĥ −Ê

⊤

−Ê O|Â |×|Â|

)(
x
y

)
=

(
0b

0|Â |

)
, (38)

wherex andy areb- and|Â |-dimensional vectors, respectively. From the upper half of Eq. (38), we
have

x = Ĥ
−1

Ê
⊤

y.

Substituting this into the lower half of Eq. (38), we have

ÊĤ
−1

Ê
⊤

y = 0|Â |.

From the definition, the rank of the matrix̂E is |Â |, that is,Ê is a row-full rank matrix. As a result,

the matrixÊĤ
−1

Ê
⊤

is invertible. Therefore, Eq. (38) has the unique solutionx = 0b andy = 0|Â |.

This implies that̂G is invertible.

Appendix B. Active Set of LSIF

Here, we prove Theorem 2.
We prove that the active setA does not change under the infinitesimal shift ofH andh if the

strict complementarity condition is satisfied. We regard the pair of a symmetric matrix and a vector
(H ′,h′) as an element in the(b(b+1)

2 +b)-dimensional Euclidean space. We consider the following
linear equation: (

α′
ξ′
)

=

(
H ′ −E⊤

−E O|A |×|A |

)−1(
h′−λ1b

0|A |

)
,

whereE is the |A | ×b indicator matrix determined from the active setA (see Section 2.3 for the
detailed definition). IfH ′ = H andh′ = h hold, the solution(α′,ξ′) = (α∗(λ),ξ∗(λ)) satisfies

α′ℓ = 0, ξ′ℓ > 0, ∀ℓ ∈ A ,
α′ℓ > 0, ξ′ℓ = 0, ∀ℓ 6∈ A ,

(39)

because of the strict complementarity condition. On the other hand, if the norm of(H ′,h′)− (H,h)
is infinitesimal, the solution(α′,ξ′) also satisfies Eq. (39) because of the continuity of the relation
between(H ′,h′) and(α′,ξ′).
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As a result, there exists anε-ball Bε in R
b(b+1)

2 +b such that the equalityA = {ℓ | α′ℓ = 0} holds
for any (H ′,h′) ∈ Bε. Therefore, we haveP(A 6= Â) ≤ P((Ĥ, ĥ) 6∈ Bε). Due to the large deviation
principle (Dembo and Zeitouni, 1998), there is a positive constantc such that

− 1
min{ntr,nte}

logP((Ĥ, ĥ) 6∈ Bε) > c > 0,

if min{ntr,nte} is large enough. Thus, asymptoticallyP(Â 6= A) < e−cmin{ntr,nte} holds.

Appendix C. Learning Curve of LSIF

Here, we prove Theorem 3.
Let us consider the ideal problem (7). Letα∗(λ) andξ∗(λ) be the optimal parameter and La-

grange multiplier (that is, the KKT conditions are fulfilled; see Section 2.3) and letξ∗′(λ) be the
vector of non-zero elements ofξ∗(λ) defined in the same way as Eq. (11). Thenα∗(λ) andξ∗′(λ)
satisfy

G

(
α∗(λ)

ξ∗′(λ)

)
=

(
h−λ1b

0|A |

)
, (40)

where

G =

(
H −E⊤

−E O|A |×|A |

)
.

From the central limit theorem and the assumption (18), we have

ĥ = h+Op

(
1√
nte

)
= h+op

(
1
ntr

)
, (41)

whereOp andop denote the asymptotic order in probability. The assumption (a) implies that the
equality

Ê = E (42)

holds with exponentially high probability due to Theorem 2. Note thatĜ is the same size asG if
Ê = E. Thus we have

Ĝ = G+δG,

where

δG =

(
δH Ob×|A|

O|A |×b O|A |×|A |

)
,

δH = Ĥ−H. (43)

Combining Eqs. (12), (40), (41), and (42), we have
(

α̂(λ)

ξ̂
′
(λ)

)
= Ĝ

−1
G

(
α∗(λ)

ξ∗′(λ)

)
+op

(
1
ntr

)
. (44)

The matrix Taylor expansion (Petersen and Pedersen, 2007) yields

Ĝ
−1

= G−1−G−1δGG−1 +G−1δGG−1δGG−1−·· · , (45)
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and the central limit theorem asserts that

δH = Op

(
1√
ntr

)
. (46)

Combining Eqs. (44), (45), (14), and (46), we have

δα = α̂(λ)−α∗(λ) (47)

=−AδHα∗(λ)+AδHAδHα∗(λ)+o

(
1
ntr

)
. (48)

Through direct calculation, we can confirm that

AHA= A. (49)

Similar to Eq. (15), it holds that
α∗(λ) = A(h−λ1b). (50)

From Eqs. (49) and (50), we have

A(Hα∗(λ)−h) =−λA1b. (51)

Eqs. (43), (4), and (3) imply
E[δH] = Ob×b. (52)

From Eqs. (2) and (47), we have

J(α̂(λ)) = J(α∗(λ))+
1
2

δα⊤Hδα+(Hα∗(λ)−h)⊤δα. (53)

From Eqs. (46), (48), and (49), we have

E

[
δα⊤Hδα

]
= tr(H E

[
δαδα⊤

]
)

= tr(AHAE

[
(δHα∗(λ))(δHα∗(λ))⊤

]
)+o

(
1
ntr

)

= tr(A E

[
(δHα∗(λ))(δHα∗(λ))⊤

]
)+o

(
1
ntr

)
. (54)

From Eqs. (48), (51), and (52), we have

E

[
δα⊤(Hα∗(λ)−h)

]
=−E

[
(δHα∗(λ)−δHAδHα∗(λ))⊤A(Hα∗(λ)−h)

]
+o

(
1
ntr

)

=E

[
(δHα∗(λ)−δHAδHα∗(λ))⊤λA1b

]
+o

(
1
ntr

)

=−λtr(A E

[
(δHα∗(λ))(δHA1b)

⊤
]
)+o

(
1
ntr

)
. (55)
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Combining Eqs. (53), (54), and (55), we have

E [J(α̂(λ))] =J(α∗(λ))+
1

2ntr
tr(A E

[
(
√

ntrδHα∗(λ))(
√

ntrδHα∗(λ))⊤
]
)

− λ
ntr

tr(A E

[
(
√

ntrδHα∗(λ))(
√

ntrδHA1b)
⊤
]
)+o

(
1
ntr

)
.

According to the central limit theorem,
√

ntrδHi, j asymptotically follows the normal distribution
with mean zero and variance

Z

ϕ2
i (x)ϕ

2
j (x)ptr(x)dx−H2

i, j ,

and the asymptotic covariance between
√

ntrδHi, j and
√

ntrδHi′, j ′ is given by

Z

ϕi(x)ϕ j(x)ϕi′(x)ϕ j ′(x)ptr(x)dx−Hi, jHi′, j ′ .

Then we have

lim
ntr→∞

E

[
(
√

ntrδHα∗(λ))(
√

ntrδHα∗(λ))⊤
]

= Cw∗,w∗ ,

lim
ntr→∞

E

[
(
√

ntrδHα∗(λ))(
√

ntrδHA1b)
⊤
]

= Cw∗,v,

whereCw,w′ is theb×b covariance matrix with the(ℓ,ℓ′)-th element being the covariance between
w(x)ϕℓ(x) andw′(x)ϕℓ′(x) underptr(x). Then we obtain Eq. (19).

Appendix D. Regularization Path of LSIF

Here, we derive the regularization path tracking algorithm given in Figure 1.
When λ is greater than or equal to maxk ĥk, the solution of the KKT conditions (9)–(10) is

provided asα = 0b, ξ = λ1b− ĥ≥ 0b. Therefore, the initial value ofλ0 is maxk ĥk, and the corre-
sponding optimal solution iŝα(λ0) = 0b.

Sinceξ̂
′
(λ) corresponds to non-zero elements ofξ̂(λ) as shown in Eq. (11), we have

ξ̂ j(λ) =

{
ξ̂′i(λ) if j = ĵ i ,

0 otherwise.
(56)

Whenλ is decreased, the solutionsα̂(λ) andξ̂(λ) still satisfy Eqs. (12) and (56) as long as the
active set̂A remains unchanged. Change points of the active set can be found by examining the non-
negativity conditions of̂α(λ) and ξ̂(λ) as follows. Supposeλ is decreased and the non-negativity
condition

(
α̂(λ)

ξ̂(λ)

)
≥ 02b

is violated atλ = λ′. That is, bothα̂(λ′) ≥ 0b and ξ̂(λ′) ≥ 0b hold, and either̂α(λ′− ε) ≥ 0b or
ξ̂(λ′− ε)≥ 0b is violated for anyε > 0. If α̂ j(λ′) = 0 for j 6∈ Â , j should be added to the active set
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Â ; on the other hand, if̂ξ j(λ′) = 0 for somej ∈ Â , α̂ j(λ′) will take a positive value and therefore
j should be removed from the active setÂ . Then, for the updated active set, we compute the
solutions by Eqs. (12) and (56). Iterating this procedure untilλ reaches zero, we can obtain the
entire regularization path.

Note that we omitted some minor exceptional cases for the sake of simplicity—treatments for all
possible exceptions and the rigorous convergence property are exhaustively studied in Best (1982).

Appendix E. Negative Index Set ofβ◦(λ)

Here we prove Theorem 4.
As explained in Appendix B, we regard the pair of a symmetric matrix and a vector(H ′,h′) as

an element in the(b(b+1)
2 +b)-dimensional Euclidean space.

We consider the linear equation

β′ = (H ′+λIb)
−1h′.

Due to the assumption, forH ′ = H andh′ = h, we have

β′ℓ 6= 0, ℓ= 1,2, . . . ,b. (57)

On the other hand, if the norm of(H ′,h′)− (H,h) is infinitesimal, the solutionβ′ also satisfies
Eq. (57), and the sign ofβ′ℓ is same as that ofβℓ for ℓ = 1,2, . . . ,b, because of the continuity of the
relation between(H ′,h′) andβ′.

As a result, there exists anε-ball Bε in R
b(b+1)

2 +b such that the equalityB = B̃ holds for any
(H ′,h′) ∈ Bε. Therefore, we haveP(B 6= B̃)≤ P((Ĥ, ĥ) 6∈ Bε). Due to the large deviation principle
(Dembo and Zeitouni, 1998), there is a positive constantc such that

− 1
min{ntr,nte}

logP((Ĥ, ĥ) 6∈ Bε) > c > 0,

if min{ntr,nte} is large enough. Thus, asymptoticallyP(B 6= B̃) < e−cmin{ntr,nte} holds.

Appendix F. Learning Curve of uLSIF

Here, we prove Theorem 5.
Let

B̂λ = Ĥ +λIb.

The matrix Taylor expansion (Petersen and Pedersen, 2007) yields

B̂
−1
λ = B−1

λ −B−1
λ δHB−1

λ +B−1
λ δHB−1

λ δHB−1
λ −·· · . (58)

Let B̃ ⊂ {1,2, . . . ,b} be the set of negative indices ofβ̃(λ), that is,

B̃ = {ℓ | β̃ℓ(λ) < 0, ℓ= 1,2, . . . ,b}.

Let D̂ be theb-dimensional diagonal matrix with theℓ-th diagonal element

D̂ℓ,ℓ =

{
0 ℓ ∈ B̃,

1 otherwise.
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The assumption (a) implies that the equality

D̂ = D (59)

holds with exponentially high probability due to Theorem 4. Combining Eqs. (59), (41), (58), and
(24), we have

δβ = β̂(λ)−β∗(λ)

= D̂B̂
−1
λ ĥ−DB−1

λ h

=−DB−1
λ δHβ◦(λ)+DB−1

λ δHB−1
λ δHβ◦(λ)+o

(
1
ntr

)
. (60)

From Eqs. (46) and (60), we have

E

[
δβ⊤Hδβ

]
= tr(B−1

λ DHDB−1
λ E

[
(δHβ◦(λ))(δHβ◦(λ))⊤

]
)+o

(
1
ntr

)
. (61)

From Eqs. (52) and (24), we have

E

[
δβ⊤(Hβ∗(λ)−h)

]
=E

[
(−δHβ◦(λ)+δHB−1

λ δHβ◦(λ))⊤B−1
λ D(Hβ∗(λ)−h)

]

+o

(
1
ntr

)

=E

[
tr(B−1

λ (δHβ◦(λ))(δHB−1
λ D(Hβ∗(λ)−h))⊤)

]

+o

(
1
ntr

)
. (62)

Combining Eqs. (53), (61), and (62), we have

E

[
J(β̂(λ))

]
=J(β∗(λ))+

1
2ntr

tr(B−1
λ DHDB−1

λ E[(
√

ntrδHβ◦(λ))(
√

ntrδHβ◦(λ))⊤)

+
1
ntr

tr(B−1
λ E[(

√
ntrδHβ◦(λ))(

√
ntrδHB−1

λ D(Hβ∗(λ)−h))⊤)+o

(
1
ntr

)
.

According to the central limit theorem, we have

lim
ntr→∞

E[(
√

ntrδHβ◦(λ))(
√

ntrδHβ◦(λ))⊤] = Cw◦,w◦ ,

lim
ntr→∞

E[(
√

ntrδHβ◦(λ))(
√

ntrδHB−1
λ D(Hβ∗(λ)−h))⊤] = Cw◦,u.

Then we obtain Eq. (25).

Appendix G. ‘Norm’ Upper Bound of Approximation Error for uLSIF

Here we prove Theorem 6.
Using the weighted norm (27), we can express diff(λ)as

diff(λ) =
infλ′≥0‖α̂(λ′)− β̂(λ)‖Ĥ

∑ntr
i=1 ŵ(xtr

i ; β̂(λ))
.
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As shown in Appendix D,̂α(λ′) = 0b holds for some largeλ′. Then we immediately have

diff(λ)≤ ‖β̂(λ)‖Ĥ
∑ntr

i=1 ŵ(xtr
i ; β̂(λ))

,

which proves Eq. (28). Letκmaxbe the largest eigenvalue ofĤ. Then‖β̂(λ)‖Ĥ can be upper bounded
as

‖β̂(λ)‖Ĥ ≤
√

κmax‖β̂(λ)‖2≤
√

κmax‖β̃(λ)‖2,

where the first inequality may be confirmed by eigen-decomposingĤ and the second inequality is
clear from the definitions of̂β(λ) andβ̃(λ). Letκmin be the smallest eigenvalue ofĤ. Then an upper
bound of‖β̃(λ)‖22 is given as

‖β̃(λ)‖22 = ĥ
⊤
(Ĥ +λIb)

−2ĥ≤ 1
(κmin +λ)2‖ĥ‖

2
2≤

1
λ2‖ĥ‖

2
2,

where the last inequality follows fromκmin > 0 .
Now we have

‖β̂(λ)‖Ĥ
∑ntr

i=1 w(xtr
i ; β̂(λ))

≤ 1

∑ntr
i=1 w(xtr

i ; β̂(λ))

√
κmax‖ĥ‖2

λ

=
1

∑ntr
i=1 ∑b

ℓ=1 ϕℓ(xtr
i )β̂ℓ(λ)/‖β̂(λ)‖1

√
κmax‖ĥ‖2

λ‖β̂(λ)‖1
.

For the denominator of the above expression, we have

ntr

∑
i=1

b

∑
ℓ=1

ϕℓ(x
tr
i )

β̂ℓ(λ)

‖β̂(λ)‖1
≥ min

ℓ′
(

ntr

∑
i=1

ϕℓ′(x
tr
i )) ·

b

∑
ℓ=1

β̂ℓ(λ)

‖β̂(λ)‖1
= min

ℓ

ntr

∑
i=1

ϕℓ(x
tr
i ),

where the last equality follows from the non-negativity ofβ̂ℓ(λ). The reciprocal of‖ĥ‖2/‖β̂(λ)‖1 is
lower bounded as follows:

‖β̂(λ)‖1
‖ĥ‖2

=

∥∥∥∥∥max

{
β̃(λ)

‖ĥ‖2
, 0

}∥∥∥∥∥
1

≥
∥∥∥∥∥max

{
β̃(λ)

‖ĥ‖2
, 0

}∥∥∥∥∥
∞

= max
ℓ

β̃ℓ(λ)

‖ĥ‖2
,

where the last equality follows from the fact that there is anℓ such that̃βℓ(λ) > 0; otherwise, we
have∑ntr

i=1 w(xtr
i ; β̂) = 0 which contradicts to the assumption of the theorem. Let us put

κe=
β̃(λ)

‖ĥ‖2
,

whereκ > 0 ande∈ R
b such that‖e‖2 = 1. Then we have

(κmax+λ)−1≤ κ ande⊤ĥ > 0.
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Note that there exists anℓ such thateℓ > 0. Then, we have

max
ℓ

β̃ℓ(λ)

‖ĥ‖2
= max

ℓ
κeℓ = κmax

ℓ
eℓ ≥

1
κmax +λ

max
ℓ

eℓ

≥ 1
κmax +λ

min
e
{max

ℓ
eℓ | e⊤e= 1, e⊤ĥ/‖̂h‖1 > 0}.

Now we prove the following lemma.

Lemma 8 Let p1, p2, . . . , pb(b≥ 2) be positive numbers such that

b

∑
ℓ=1

pℓ = 1,

and let

ε =
1√
b

min
ℓ

pℓ

1− pℓ
.

Then, there exists no e= (e1,e2, . . . ,eb) ∈ R
b such that the three conditions,

b

∑
ℓ=1

e2
ℓ = 1,

b

∑
ℓ=1

pℓeℓ > 0, and eℓ < ε for ℓ = 1,2, . . . ,b

are satisfied at the same time.

Proof We suppose thate∈ R
b satisfies the three conditions. If minℓ pℓ/(1− pℓ) > 1, we have

pℓ > 1/2 for all ℓ. However, this is contradictory to∑b
ℓ=1 pℓ = 1. Therefore, we have

min
ℓ

pℓ/(1− pℓ)≤ 1,

from which we have
ε≤ 1/

√
b.

The equality constraint∑b
ℓ=1e2

ℓ = 1 implies the condition that there exists anei such that|ei | ≥ 1/
√

b.
Moreover, we havee1,e2, . . . ,eb < ε≤ 1/

√
b, and thus there is anei such thatei ≤−1/

√
b. Hence,

we have

pi√
b
≤ − piei < ∑

ℓ6=i

pℓeℓ < ∑
ℓ6=i

pℓ
1√
b

min
k

pk

1− pk
= (1− pi)

1√
b

min
k

pk

1− pk
≤ pi√

b
.

This results in contradiction.

Let pℓ = ĥℓ/‖ĥ‖1 and we use Lemma 8. Note that any element ofĥ is positive. Then, we have

‖β̂(λ)‖1
‖ĥ‖2

≥ 1
κmax +λ

· 1√
b

min
ℓ

pℓ

∑i6=ℓ pi
.

Moreover, we have

min
ℓ

pℓ

∑i6=ℓ pi
≥ minℓ ĥℓ

∑b
ℓ′=1 ĥℓ′

=
minℓ ∑nte

j=1 ϕℓ(xte
j )

∑b
ℓ′=1 ∑nte

j=1 ϕℓ′(xte
j )
≥

minℓ ∑nte
j=1 ϕℓ(xte

j )

nteb
,
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where the last inequality follows from the assumption 0< ϕℓ(x) ≤ 1. Therefore, we have the in-
equality

1

∑n
i=1 w(xtr

i ; β̂(λ))

√
κmax‖ĥ‖2

λ

≤ b
√

bκmax

(
1+

κmax

λ

) 1
minℓ ∑ntr

i=1 ϕℓ(xtr
i )
· nte

minℓ′ ∑nte
j=1 ϕℓ′(xte

j )
. (63)

An upper bound ofκmax is given as follows. For alla∈ R
b, the inequality

−
b

∑
ℓ=1

|aℓ|ϕℓ(x)≤
b

∑
ℓ=1

aℓϕℓ(x)≤
b

∑
ℓ=1

|aℓ|ϕℓ(x) (64)

holds because of the positivity ofϕℓ(x). Let us define ¯a∈ R
b for givena∈ R

b as

ā = (|a1|, |a2|, . . . , |ab|)⊤.

Note that‖ā‖2 = ‖a‖2 holds. Then, using Eq. (64), we obtain the inequality

a⊤Ĥa =
1
ntr

ntr

∑
i=1

(
b

∑
ℓ=1

aℓϕℓ(x
tr
i )

)2

≤ 1
ntr

ntr

∑
i=1

(
b

∑
ℓ=1

|aℓ|ϕℓ(x
tr
i )

)2

= ā⊤Ĥā,

for anya∈ R
b. Therefore, we obtain

max
‖a‖2=1

a⊤Ĥa≤ max
‖a‖2=1

ā⊤Ĥā = max
‖a‖2=1, a≥0b

a⊤Ĥa, (65)

where the last equality is derived from the relation,

{ā | ‖a‖2 = 1, a∈ R
b} = {a | ‖a‖2 = 1, a≥ 0b, a∈ R

b}.
On the other hand, due to the additional constrainta≥ 0b, the inequality

max
‖a‖2=1, a≥0b

a⊤Ĥa ≤ max
‖a‖2=1

a⊤Ĥa (66)

holds. From Eqs. (65) and (66), we have

κmax = max
‖a‖2=1

a⊤Ĥa = max
‖a‖2=1,a≥0b

a⊤Ĥa = max
‖a‖2=1, a≥0b

1
ntr

ntr

∑
i=1

(
b

∑
ℓ=1

aℓϕℓ(x
tr
i )

)2

.

Using the assumption 0< ϕℓ(x)≤ 1, we have

κmax = max
‖a‖2=1, a≥0b

1
ntr

ntr

∑
i=1

(
b

∑
ℓ=1

aℓϕℓ(x
tr
i )

)2

≤ max
‖a‖2=1, a≥0b

1
ntr

ntr

∑
i=1

(
b

∑
ℓ=1

aℓ

)2

= max
‖a‖2=1, a≥0b

(
b

∑
ℓ=1

aℓ

)2

≤ max
‖a‖2=1, a≥0b

b·
b

∑
ℓ=1

a2
ℓ

= b, (67)

where the Schwarz inequality fora and 1b is used in the last inequality. The inequalities (63) and
(67) lead to the inequality (29).

It is clear that the upper bound (29) is a decreasing function ofλ (> 0). For the Gaussian basis
function,ϕℓ(x) is an increasing function with respect to the Gaussian widthσ. Thus, Eq. (29) is a
decreasing function ofσ.
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Appendix H. ‘Bridge’ Upper Bound of Approximation Error for uLSIF

Here we prove Theorem 7.
From the triangle inequality, we obtain

diff(λ)≤ infλ′≥0‖α̂(λ′)− γ̂(λ)‖Ĥ +‖γ̂(λ)− β̂(λ)‖Ĥ
∑ntr

i=1 ŵ(xtr
i ; β̂(λ))

. (68)

We derive an upper bound of the first term.
First, we show that the LSIF optimization problem (6) is equivalently expressed as

min
α∈Rb

[
1
2

α⊤Ĥα− ĥ
⊤

α
]

subject toα≥ 0b, 1⊤b α≤ c,

which we refer to as LSIF′. The KKT conditions of LSIF (6) are given as

{
Ĥα− ĥ+λ1b−µ= 0b,

α≥ 0b, µ≥ 0b, α⊤µ= 0,

whereµ is the Lagrange multiplier vector. Similarly, the KKT conditions of LSIF′ are given as





Ĥα− ĥ+µ01b−µ= 0b,

α≥ 0b, µ≥ 0b, α⊤µ= 0,

1⊤b α−c≤ 0, µ0≥ 0, (1⊤b α−c)µ0 = 0,

(69)

whereµ andµ0 are the Lagrange multipliers. Let(α̂(λ), µ̂(λ)) be the solution of the KKT conditions
of LSIF. Then, we find that(α,µ,µ0) = (α̂(λ), µ̂(λ),λ) is the solution of Eq. (69) withc = 1⊤b α̂(λ).
Note that LSIF′ is a strictly convex optimization problem, and thusα̂(λ) is the unique optimal
solution. Conversely, when the solution of Eq. (69) is provided as(α̂, µ̂,µ0), LSIF with λ = µ0 has
the same optimal solution̂α.

When the optimal solution of LSIFq iŝγ(λ), the KKT conditions of LSIFq (30) are given as

Ĥ γ̂(λ)− ĥ+λγ̂(λ)− η̂ = 0b, (70)

γ̂(λ)≥ 0b, η̂≥ 0b, γ̂(λ)⊤η̂ = 0, (71)

whereη̂ is the Lagrange multiplier vector.
Let α̂(λ1) be the optimal solution of LSIF′ with c= 1⊤b γ̂(λ), and suppose that the solutionα̂(λ1)

coincides with that of LSIF withλ = λ1. Then, from Eq. (69), we have

Ĥα̂(λ1)− ĥ+λ11b− µ̂(λ1) = 0b, (72)

α̂(λ1)≥ 0b, µ̂(λ1)≥ 0b, α̂(λ1)
⊤µ̂(λ1) = 0, (73)

1⊤b α̂(λ1)−1⊤b γ̂(λ)≤ 0, λ1≥ 0, (1⊤b α̂(λ1)−1⊤b γ̂(λ))λ1 = 0. (74)

From Eqs. (70) and (72), we obtain

Ĥ(α̂(λ1)− γ̂(λ)) =−λ11b +λγ̂(λ)+ µ̂(λ1)− η̂. (75)
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Applying Eqs. (71), (73), (74), and (75), we have

inf
λ′≥0
‖α̂(λ′)− γ̂(λ)‖2

Ĥ
≤ (α̂(λ1)− γ̂(λ))⊤Ĥ(α̂(λ1)− γ̂(λ))

= −λ1(α̂(λ1)− γ̂(λ))⊤1b +λ(α̂(λ1)− γ̂(λ))⊤γ̂(λ)

+(α̂(λ1)− γ̂(λ))⊤(µ̂(λ1)− η̂)

= λ(α̂(λ1)
⊤γ̂(λ)−‖γ̂(λ)‖22)− α̂(λ1)

⊤η̂− γ̂(λ)⊤µ̂(λ1)

≤ λ(α̂(λ1)
⊤γ̂(λ)−‖γ̂(λ)‖22). (76)

Fromα̂(λ1)≥ 0b, γ̂(λ)≥ 0b, and 1⊤b α̂(λ1)≤ 1⊤b γ̂(λ), we have

‖α̂(λ1)‖1 = 1⊤b α̂(λ1)≤ 1⊤b γ̂(λ)≤ ‖γ̂(λ)‖1.

Then we have the following inequality:

α̂(λ1)
⊤γ̂(λ)≤ α̂(λ1)

⊤(‖γ̂(λ)‖∞1b)

= ‖α̂(λ1)‖1 · ‖γ̂(λ)‖∞ ≤ ‖γ̂(λ)‖1 · ‖γ̂(λ)‖∞. (77)

For p andq such that 1/p+1/q= 1 and 1≤ p,q≤ ∞, Hölder’s inequality states that

‖α∗β‖1≤ ‖α‖p · ‖β‖q,

whereα∗β denotes the element-wise product ofα andβ. Settingp = 1, q = ∞, andα = β = γ̂(λ)
in Hölder’s inequality, we have

‖γ̂(λ)‖1 · ‖γ̂(λ)‖∞−‖γ̂(λ)‖22≥ 0. (78)

Combining Eqs. (68), (76), (77), and (78), we obtain

diff(λ) ≤

√
λ(‖γ̂(λ)‖1 · ‖γ̂(λ)‖∞−‖γ̂(λ)‖22)+‖γ̂(λ)− β̂(λ)‖Ĥ

∑ntr
i=1 ŵ(xtr

i ; β̂(λ))
.

Appendix I. Closed Form of LOOCV Score for uLSIF

Here we derive a closed form expression of the LOOCV score for uLSIF (see Figure 2 for the
pseudo code).

Let
ϕ(x) = (ϕ1(x),ϕ2(x), . . . ,ϕb(x))

⊤.

Then the matrix̂H and the vector̂h are expressed as

Ĥ =
1
ntr

ntr

∑
i=1

ϕ(xtr
i )ϕ(xtr

i )⊤,

ĥ =
1

nte

nte

∑
j=1

ϕ(xte
j ),
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and the coefficients̃β(λ) can be computed by

β̃(λ) = B̂
−1
λ ĥ.

Let β̂
(i)

be the estimator obtained without thei-th training samplextr
i and thei-th test samplexte

i .
Then the estimator has the following closed form:

β̂
(i)

(λ) = max(0b, β̃
(i)

(λ)),

β̃
(i)

(λ) =

(
1

ntr−1
(ntrĤ−ϕ(xtr

i )ϕ(xtr
i )⊤)+λIb

)−1 1
nte−1

(ntêh−ϕ(xte
j )).

Let B̂ = Ĥ + λ(ntr−1)
ntr

Ib andβ̃ = B̂
−1

ĥ in the following calculation. Using the Sherman-Woodbury-

Morrison formula (33), we can simplify the expression ofβ̃
(i)

(λ) as follows:

β̃
(i)

(λ) =
ntr−1

ntr

(
B̂− 1

ntr
ϕ(xtr

i )ϕ(xtr
i )⊤
)−1( nte

nte−1
ĥ− 1

nte−1
ϕ(xte

i )

)

=
ntr−1

ntr

(
B̂
−1

+
1

ntr−ϕ(xtr
i )⊤B̂

−1
ϕ(xtr

i )
B̂
−1

ϕ(xtr
i )ϕ(xtr

i )⊤B̂
−1
)

×
(

nte

nte−1
ĥ− 1

nte−1
ϕ(xte

i )

)

=
(ntr−1)nte

ntr(nte−1)

(
β̃+

ϕ(xtr
i )⊤β̃

ntr−ϕ(xtr
i )⊤B̂

−1
ϕ(xtr

i )
B̂
−1

ϕ(xtr
i )

)

− (ntr−1)

ntr(nte−1)

(
B̂
−1

ϕ(xte
i )+

ϕ(xtr
i )⊤B̂

−1
ϕ(xte

i )

ntr−ϕ(xtr
i )⊤B̂

−1
ϕ(xtr

i )
B̂
−1

ϕ(xtr
i )

)
.

Thus the matrix inversion required for computingβ̃
(i)

(λ) for all i = 1,2, . . . . ,ntr is only B̂. Applying
this to Eq. (32) and rearrange the formula, we can compute the LOOCV score analytically.
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Abstract

Methods for directly estimating the ratio of two probability density functions have
been actively explored recently since they can be used for various data processing
tasks such as non-stationarity adaptation, outlier detection, and feature selection. In
this paper, we develop a new method which incorporates dimensionality reduction
into a direct density-ratio estimation procedure. Our key idea is to find a low-
dimensional subspace in which densities are significantly different and perform den-
sity ratio estimation only in this subspace. The proposed method, D3-LHSS (Direct
Density-ratio estimation with Dimensionality reduction via Least-squares Hetero-
distributional Subspace Search), is shown to overcome the limitation of baseline
methods.

Keywords

density ratio estimation, dimensionality reduction, unconstrained least-squares im-
portance fitting

1 Introduction

Recently, it has been demonstrated that various machine learning and data mining tasks
can be formulated in terms of the ratio of two probability density functions (Sugiyama
et al., 2009; Sugiyama et al., 2011). Examples of such tasks include covariate shift adap-
tation (Shimodaira, 2000; Zadrozny, 2004; Sugiyama et al., 2007; Sugiyama & Kawanabe,
2010), transfer learning (Storkey & Sugiyama, 2007), multi-task learning (Bickel et al.,
2008), outlier detection (Hido et al., 2008; Smola et al., 2009; Hido et al., 2010), condi-
tional density estimation (Sugiyama et al., 2010c), probabilistic classification (Sugiyama,
2010), variable selection (Suzuki et al., 2009a), independent component analysis (Suzuki
& Sugiyama, 2009), supervised dimensionality reduction (Suzuki & Sugiyama, 2010), and
causal inference (Yamada & Sugiyama, 2010), For this reason, estimating the density
ratio has been attracting a great deal of attention, and various approaches have been
explored (Silverman, 1978; Ćwik & Mielniczuk, 1989; Gijbels & Mielniczuk, 1995; Sun &
Woodroofe, 1997; Jacob & Oliveira, 1997; Qin, 1998; Cheng & Chu, 2004; Huang et al.,
2007; Bensaid & Fabre, 2007; Bickel et al., 2007; Sugiyama et al., 2008; Kanamori et al.,
2009a; Chen et al., 2009; Sugiyama et al., 2010b; Nguyen et al., 2010).

A naive approach to density ratio estimation is to approximate the two densities in
the ratio (i.e., the numerator and the denominator) separately using a flexible technique
such as non-parametric kernel density estimation (Silverman, 1986; Härdle et al., 2004),
and then take the ratio of the estimated densities. However, this naive two-step approach
is not reliable in practical situations since kernel density estimation performs poorly in
high-dimensional cases; furthermore, division by an estimated density tends to magnify
the estimation error. To improve the estimation accuracy, various methods have been
developed for directly estimating the density ratio without going through density esti-
mation, e.g., the moment matching method using reproducing kernels (Aronszajn, 1950;
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Knowing two densities Knowing  ratio

r(x) =
pnu(x)

pde(x)
pnu(x), pde(x)

Figure 1: Density ratio estimation is substantially easier than density estimation. The
density ratio r(x) can be computed if two densities pnu(x) and pde(x) are known. However,
even if the density ratio is known, the two densities cannot be computed in general.

Steinwart, 2001) called kernel mean matching (KMM) (Huang et al., 2007; Quiñonero-
Candela et al., 2009), the method based on logistic regression (LR) (Qin, 1998; Cheng
& Chu, 2004; Bickel et al., 2007), the distribution matching method under the Kullback-
Leibler (KL) divergence (Kullback & Leibler, 1951) called the KL importance estimation
procedure (KLIEP) (Sugiyama et al., 2008; Nguyen et al., 2010), and the density-ratio
matching methods under the squared-loss called least-squares importance fitting (LSIF)
and unconstrained LSIF (uLSIF) (Kanamori et al., 2009a). These methods have been
shown to compare favorably with naive kernel density estimation through extensive ex-
periments.

The success of these direct density-ratio estimation methods could be intuitively un-
derstood through Vapnik’s principle (Vapnik, 1998): “When solving a problem of interest,
one should not solve a more general problem as an intermediate step”. The support vec-
tor machine would be a successful example following this principle—instead of estimating
the data generation model, it directly models the decision boundary which is simpler and
sufficient for pattern recognition. In the current context, estimating the densities is more
general than estimating the density ratio since knowing the two densities implies knowing
the ratio, but not vice versa (Figure 1). Thus directly estimating the density ratio would
be more promising than density ratio estimation via density estimation.

However, density ratio estimation in high-dimensional cases is still challenging even
when the ratio is estimated directly without going through density estimation. Recently,
an approach called Direct Density-ratio estimation with Dimensionality reduction (D3)
has been proposed (Sugiyama et al., 2010a). The basic idea of D3 is the following two-
step procedure: First a subspace in which the numerator and denominator densities are
significantly different (called the hetero-distributional subspace) are identified, and then
density ratio estimation is performed in this subspace. The rationale behind this approach
is that, in practice, the distribution change does not occur in the entire space, but is
often confined in a subspace. For example, in non-stationarity adaptation scenarios, the
distribution change often occurs only for some attributes and other variables are stable; in
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outlier detection scenarios, only a small number of attributes would cause a data sample
to be an outlier.

In the D3 algorithm, the hetero-distributional subspace is identified by searching a
subspace in which samples drawn from the two distributions (i.e., the numerator and the
denominator of the ratio) are separated from each other—this search is carried out in
a computationally efficient manner using a supervised dimensionality reduction method
called local Fisher discriminant analysis (LFDA) (Sugiyama, 2007). Then, within the
identified hetero-distributional subspace, a direct density-ratio estimation method called
unconstrained least-squares importance Fitting (uLSIF)—which was shown to be com-
putationally efficient (Kanamori et al., 2009a) and numerically stable (Kanamori et al.,
2009b)—is employed for obtaining the final density-ratio estimator. Through experi-
ments, this D3 procedure (which we refer to as D3-LFDA/uLSIF) was shown to improve
the performance in high-dimensional cases.

Although the framework of D3 is promising, the above D3-LFDA/uLSIF method pos-
sesses two fundamental weaknesses: the restrictive definition of the hetero-distributional
subspace and the limiting ability of its search method. More specifically, the component
inside the hetero-distributional subspace and its complementary component are assumed
to be statistically independent in the original formulation (Sugiyama et al., 2010a). How-
ever, this assumption is rather restrictive and may not be fulfilled in practice. Also, in
the above D3 procedure, the hetero-distributional subspace is identified by searching a
subspace in which samples drawn from the numerator and denominator distributions are
separated from each other. If samples from the two distributions are separable, the two
distributions would be significantly different. However, the opposite may not be always
true, i.e., non-separability does not necessarily imply that the two distributions are dif-
ferent (consider two similar distributions with the common support). Thus LFDA (and
any other supervised dimensionality reduction methods) does not necessarily identify the
correct hetero-distributional subspace.

The goal of this paper is to give a new procedure of D3 that can overcome the above
weaknesses. First, we adopt a more general definition of the hetero-distributional sub-
space. More precisely, we remove the independence assumption between the component
inside the hetero-distributional subspace and its complementary component. This allows
us to apply the concept of D3 to a wider class of problems. However, this general def-
inition in turn makes the problem of searching the hetero-distributional subspace more
challenging—supervised dimensionality reduction methods for separating samples drawn
from the two distributions cannot be used anymore, but we need an alternative method
that identifies the largest subspace such that the two conditional distributions are equiv-
alent in its complementary subspace.

We prove that the hetero-distributional subspace can be identified by finding a sub-
space in which two marginal distributions are maximally different under the Pearson
divergence, which is a squared-loss variant of the Kullback-Leibler divergence and is an
instance of the f -divergences (Ali & Silvey, 1966; Csiszár, 1967). Then we propose a
new method, which we call Least-squares Hetero-distributional Subspace Search (LHSS),
for searching a subspace such that the Pearson divergence between two marginal distri-
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� Naïve density estimation

� Direct density-ratio estimation (the above two steps are merged into a single process)

� Direct density-ratio estimation with dimensionality reduction (D3-LFDA/uLSIF)

� Proposed approach: Direct density-ratio estimation with dimensionality reduction    
(D3-LHSS; the above two steps are merged into a single process)

Estimating two
densities by KDE

Estimating two
densities by KDE Taking the ratioTaking the ratio

Directly estimating the ratio by
KMM, LogReg, KLIEP, LSIF, or uLSIF

Directly estimating the ratio by
KMM, LogReg, KLIEP, LSIF, or uLSIF

Directly estimating the ratio by uLSIF
in hetero-distributional subspace

Directly estimating the ratio by uLSIF
in hetero-distributional subspace

Identifying hetero-distributional
subspace by LFDA

Identifying hetero-distributional
subspace by LFDA

Simultaneously identifying hetero-distributional subspace
and directly estimating the ratio in the subspace by uLSIF

Simultaneously identifying hetero-distributional subspace
and directly estimating the ratio in the subspace by uLSIF

Goal: Estimate density ratio                                from samples   
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Figure 2: Existing and proposed density-ratio estimation approaches.

butions are maximized. An advantage of the LHSS method is that the subspace search
(divergence estimation within a subspace) is carried out also using the density-ratio es-
timation method uLSIF. Thus the two steps in the D3 procedure (first identifying the
hetero-distributional subspace and then estimating the density ratio within the subspace)
are merged into a single step. Thanks to this, the final density-ratio estimator can be au-
tomatically obtained without additional computation. We call the combined single-shot
density-ratio estimation procedure D3 via LHSS (D3-LHSS). Through experiments, we
show that the weaknesses of the existing approach can be successfully overcome by the
D3-LHSS approach.

Relation among the existing and proposed density-ratio estimation methods is sum-
marized in Figure 2.

2 Formulation of Density-ratio Estimation Problem

In this section, we formulate the problem of density ratio estimation and review a relevant
density-ratio estimation method. We briefly summarize possible usage of density ratios
in various data processing tasks in Appendix A.
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2.1 Problem Formulation

Let D (⊂ Rd) be the data domain and suppose we are given independent and identi-
cally distributed (i.i.d.) samples {xnu

i }nnu
i=1 from a distribution with density pnu(x) and

i.i.d. samples {xde
j }

nde
j=1 from another distribution with density pde(x). We assume that

the latter density pde(x) is strictly positive, i.e.,

pde(x) > 0 for all x ∈ D.

The problem we address in this paper is to estimate the density ratio

r(x) :=
pnu(x)

pde(x)

from samples {xnu
i }nnu

i=1 and {xde
j }

nde
j=1. The subscripts ‘nu’ and ‘de’ denote ‘numerator’ and

‘denominator’, respectively.

2.2 Directly Estimating Density Ratios by Unconstrained
Least-squares Importance Fitting (uLSIF)

As described in Appendix A, density ratios are useful in various data processing tasks.
Since the density ratio is usually unknown and needs to be estimated from data, methods
of estimating the density ratio have been actively explored recently (Qin, 1998; Cheng &
Chu, 2004; Huang et al., 2007; Bickel et al., 2007; Sugiyama et al., 2008; Kanamori et al.,
2009a). Here, we briefly review a direct density-ratio estimation method called uncon-
strained least-squares importance fitting (uLSIF) proposed by Kanamori et al. (2009a).
For convenience in later sections, we replace the symbol x with u, i.e., let us consider the
problem of estimating the density ratio

r(u) :=
pnu(u)

pde(u)

from the i.i.d. samples {unu
i }nnu

i=1 and {ude
j }

nde
j=1.

2.2.1 Linear Least-squares Estimation of Density Ratios

Let us model the density ratio r(u) by the following linear model:

r̂(u) :=
b∑
ℓ=1

αℓψℓ(u),

where

α := (α1, α2, . . . , αb)
⊤
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are parameters to be learned from data samples, b denotes the number of parameters, ⊤

denotes the transpose of a matrix or a vector, and {ψℓ(u)}bℓ=1 are basis functions such
that

ψℓ(u) ≥ 0 for all u and for ℓ = 1, 2, . . . , b.

Note that b and {ψℓ(u)}bℓ=1 could be dependent on the samples {unu
i }nnu

i=1 and {ude
j }

nde
j=1,

meaning that kernel models are also allowed. We explain how the basis functions
{ψℓ(u)}bℓ=1 are designed in Section 2.2.2.

The parameters {αℓ}bℓ=1 in the model r̂(u) are determined so that the following squared
error J0 is minimized:

J0(α) :=
1

2

∫
(r̂(u)− r(u))2 pde(u)du

=
1

2

∫
r̂(u)2pde(u)du−

∫
r̂(u)pnu(u)du+

1

2

∫
r(u)pnu(u)du,

where the last term is a constant and therefore can be safely ignored. Let us denote the
first two terms by J :

J(α) :=
1

2

∫
r̂(u)2pde(u)du−

∫
r̂(u)pnu(u)du. (1)

Note that the same objective function can be obtained via the Legendre-Fenchel duality
of a divergence (Nguyen et al., 2010).

Approximating the expectations in J by empirical averages, we obtain

Ĵ(α) :=
1

2nde

nde∑
j=1

r̂(ude
j )2 − 1

nnu

nnu∑
i=1

r̂(unu
i )

=
1

2
α⊤Ĥα− ĥ

⊤
α,

where Ĥ is the b× b matrix with the (ℓ, ℓ′)-th element

Ĥℓ,ℓ′ :=
1

nde

nde∑
j=1

ψℓ(u
de
j )ψℓ′(u

de
j ), (2)

and ĥ is the b-dimensional vector with the ℓ-th element

ĥℓ :=
1

nnu

nnu∑
i=1

ψℓ(u
nu
i ). (3)

Now the optimization problem is formulated as follows.

α̂ := argmin
α∈Rb

[
1

2
α⊤Ĥα− ĥ

⊤
α+

λ

2
α⊤α

]
, (4)
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where a penalty term λα⊤α/2 is included for regularization purposes, and λ (≥ 0) is a
regularization parameter that controls the strength of regularization. It is easy to confirm
that the solution α̂ can be analytically computed as

α̂ = (Ĥ + λIb)
−1ĥ, (5)

where Ib is the b-dimensional identity matrix. Thanks to this analytic-form expression,
uLSIF is computationally efficient compared with other density-ratio estimators which
involve non-linear optimization (Qin, 1998; Cheng & Chu, 2004; Huang et al., 2007;
Bickel et al., 2007; Sugiyama et al., 2008; Nguyen et al., 2010).

In the original uLSIF paper (Kanamori et al., 2009a), the above solution is further
modified as

α̂ℓ ←− max(0, α̂ℓ).

This modification may improve the estimation accuracy in finite sample cases since the
true density ratio is non-negative. Even so, we still use Eq.(5) as it is since it is differen-
tiable with respect to U , where u = Ux. This differentiability will play a crucial role in
the next section. Note that, even without the above round-up modification, the solution
is guaranteed to converge to the optimal vector asymptotically both in parametric and
non-parametric cases (Kanamori et al., 2009a; Kanamori et al., 2009b). Thus omitting
the above modification step may not have a strong effect.

It was theoretically shown that uLSIF possesses superior theoretical properties in
statistical convergence and numerical stability (Kanamori et al., 2009a; Kanamori et al.,
2009b).

2.2.2 Basis Function Design

The performance of uLSIF depends on the choice of the basis functions {ψℓ(u)}bℓ=1. As
explained below, the use of Gaussian basis functions would be reasonable:

r̂(u) =
nnu∑
ℓ=1

αℓK(u,unu
ℓ ),

where K(u,u′) is the Gaussian kernel with kernel width σ (> 0):

K(u,u′) = exp

(
−∥u− u

′∥2

2σ2

)
.

By definition, the density ratio r(u) tends to take large values if pnu(u) is large and
pde(u) is small; conversely, r(u) tends to be small (i.e., close to zero) if pnu(u) is small
and pde(u) is large. When a non-negative function is approximated by a Gaussian kernel
model, many kernels may be needed in the region where the output of the target function
is large; on the other hand, only a small number of kernels would be enough in the region
where the output of the target function is close to zero (see Figure 3). Following this
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Input
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t

Figure 3: Heuristic of Gaussian kernel allocation.

heuristic, we allocate many kernels in the region where pnu(u) takes large values, which
may be approximately achieved by setting the Gaussian centers at {unu

i }nnu
i=1.

Alternatively, we may locate (nnu + nde) Gaussian kernels at both {unu
i }nnu

i=1 and
{ude

j }
nde
j=1. However, in our preliminary experiments, this did not further improve the

performance, but slightly increased the computational cost. When nnu is very large, just
using all the test input points {unu

i }nnu
i=1 as Gaussian centers is already computationally

rather demanding. To ease this problem, a subset of {unu
i }nnu

i=1 may be used as Gaussian
centers for computational efficiency, i.e., for a prefixed b (∈ {1, 2, . . . , nnu}), we use

r̂(u) =
b∑
ℓ=1

αℓK(u, cℓ),

where {cℓ}bℓ=1 are template points randomly chosen from {unu
i }nnu

i=1 without replacement.
The performance of uLSIF depends on the kernel width σ and the regularization

parameter λ. Model selection of uLSIF is possible based on cross-validation (CV) with
respect to the error criterion (1) (Kanamori et al., 2009a).

3 Direct Density-ratio Estimation with Dimension-

ality Reduction

Although uLSIF was shown to be a useful density ratio estimation method (Kanamori
et al., 2009a), estimating the density ratio in high-dimensional spaces is still challenging.
In this section, we propose a new method of direct density-ratio estimation that involves
dimensionality reduction.

3.1 Hetero-distributional Subspace

Our basic idea is to first find a low-dimensional subspace in which the two densities are
significantly different from each other, and then perform density ratio estimation only
in this subspace. Although a similar framework has been explored in Sugiyama et al.
(2010a), the current formulation is substantially more general than the previous approach,
as explained below.
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Let u be an m-dimensional vector (1 ≤ m ≤ d) and v be a (d−m)-dimensional vector
defined as [

u

v

]
:=

[
U

V

]
x,

where U is an m × d matrix and V is a (d − m) × d matrix. In order to ensure the
uniqueness of the decomposition, we assume (without loss of generality) that the row
vectors of U and V form an orthonormal basis, i.e., U and V correspond to “projection”
matrices that are orthogonally complementary to each other (see Figure 4). Then the two
densities pnu(x) and pde(x) can be decomposed as

pnu(x) = pnu(v|u)pnu(u),
pde(x) = pde(v|u)pde(u).

The key theoretical assumption which forms the basis of our proposed algorithm is
that the conditional densities pnu(v|u) and pde(v|u) agree with each other, i.e., the two
densities pnu(x) and pde(x) are decomposed as

pnu(x) = p(v|u)pnu(u),
pde(x) = p(v|u)pde(u),

where p(v|u) is the common conditional density. This assumption implies that the
marginal densities of u are different, but the conditional density of v given u is com-
mon to pnu(x) and pde(x). Then the density ratio is simplified as

r(x) =
pnu(u)

pde(u)
=: r(u).

Thus, the density ratio does not have to be estimated in the entire d-dimensional space,
but it is sufficient to estimate the ratio only in the m-dimensional subspace specified by
U .

Below, we will use the term, the hetero-distributional subspace, for indicating the
subspace specified by U in which pnu(u) and pde(u) are different. More precisely, let S
be a subspace specified by U and V such that

S = {U⊤Ux | pnu(v|u) = pde(v|u), u = Ux, v = V x}.

Then the hetero-distributional subspace is defined as the intersection of all subspaces
S. Intuitively, the hetero-distributional subspace is the ‘smallest’ subspace specified by
U such that pnu(v|u) and pde(v|u) agree with each other. We refer to the orthogonal
complement of the hetero-distributional subspace as the homo-distributional subspace (see
Figure 4).

This formulation is a generalization of the one proposed in Sugiyama et al. (2010a) in
which the components in the hetero-distributional subspace and its complimentary sub-
space are assumed to be independent of each other. On the other hand, we do not impose
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∈
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m

Homo-distributional subspace

Figure 4: Hetero-distributional subspace.

such an independence assumption in the current paper. As will be demonstrated in Sec-
tion 4.1, this generalization has a remarkable effect in extending the range of applications
of direct density-ratio estimation with dimensionality reduction.

For the moment, we assume that the true dimensionalitym of the hetero-distributional
subspace is known. Later, we explain how m is estimated from data.

3.2 Estimating Pearson Divergence Using uLSIF

Here, we introduce a criterion for hetero-distributional subspace search and how it is
estimated from data.

We use the Pearson divergence (PD) as our criterion for evaluating the discrepancy
between two distributions. PD is a squared-loss variant of the Kullback-Leibler divergence
(Kullback & Leibler, 1951), and is an instance of the f -divergences, which are also known
as the Csiszár f -divergences (Csiszár, 1967) or the Ali-Silvey distances (Ali & Silvey,
1966). PD from pnu(x) to pde(x) is defined and expressed as

PD[pnu(x), pde(x)] :=
1

2

∫ (
pnu(x)

pde(x)
− 1

)2

pde(x)dx

=
1

2

∫
pnu(x)

pde(x)
pnu(x)dx−

1

2
.

PD[pnu(x), pde(x)] vanishes if and only if pnu(x) = pde(x).
The following lemma (called the “data processing” inequality) characterizes the hetero-

distributional subspace in terms of PD.

Lemma 1 Let

PD[pnu(u), pde(u)] =
1

2

∫ (
pnu(u)

pde(u)
− 1

)2

pde(u)du

=
1

2

∫
pnu(u)

pde(u)
pnu(u)du−

1

2
. (6)
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(constant)

�

pnu x , pde x

pnu u , pde u

)

∫
(

pnu x

pde x

−

pnu u

pde u

)2

pde x x

Figure 5: Since PD[pnu(x), pde(x)] is constant, minimizing 1
2

∫ (pnu(x)
pde(x)

− pnu(u)
pde(u)

)2
pde(x)dx

is equivalent to maximizing PD[pnu(u), pde(u)].

Then we have

PD[pnu(x), pde(x)]− PD[pnu(u), pde(u)] =
1

2

∫ (
pnu(x)

pde(x)
− pnu(u)

pde(u)

)2

pde(x)dx (7)

≥ 0.

A proof of the above lemma (for a class of f -divergences) is provided in Ap-
pendix B. The right-hand side of Eq.(7) is non-negative, and it vanishes if and only
if pnu(v|u) = pde(v|u). Since PD[pnu(x), pde(x)] is a constant with respect to U , max-
imizing PD[pnu(u), pde(u)] with respect to U leads to pnu(v|u) = pde(v|u) (Figure 5).
That is, the hetero-distributional subspace can be characterized as the maximizer1 of
PD[pnu(u), pde(u)].

Although the hetero-distributional subspace can be characterized as the maximizer of
PD[pnu(u), pde(u)], we cannot directly find the maximizer since pnu(u) and pde(u) are un-
known. Here, we utilize a direct density-ratio estimator uLSIF (see Section 2.2) for approx-
imating PD[pnu(u), pde(u)] from samples. Let us replace the density ratio pnu(u)/pde(u)
in Eq.(6) by a density ratio estimator r̂(u). Approximating the expectation over pnu(u)
by an empirical average over {unu

i }nnu
i=1, we have the following PD estimator.

P̂D[pnu(u), pde(u)] :=
1

2nnu

nnu∑
i=1

r̂(unu
i )− 1

2
.

Since uLSIF was shown to be consistent (i.e., the solution converges to the optimal
value) both in parametric and non-parametric cases (Kanamori et al., 2009a; Kanamori

et al., 2009b), P̂D would be a consistent estimator of the true PD.

1As shown in Appendix B, the data processing inequality holds not only for PD, but also for any
f -divergences. Thus the characterization of the hetero-distributional subspace is not limited to PD, but
is applicable to all f -divergences.
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3.3 Least-squares Hetero-distributional Subspace Search
(LHSS)

Given the uLSIF-based PD estimator P̂D[pnu(u), pde(u)], our next task is to find a max-

imizer of P̂D[pnu(u), pde(u)] with respect to U , and identify the hetero-distributional
subspace (cf. the data processing inequality given in Lemma 1). We call this procedure
Least-squares Hetero-distributional Subspace Search (LHSS).

We may employ various optimization techniques to find a maximizer of
P̂D[pnu(u), pde(u)]. Here we describe several possibilities.

3.3.1 Plain Gradient Algorithm

A gradient ascent algorithm would be a fundamental approach to non-linear smooth
optimization. We utilize the following lemma.

Lemma 2 The gradient of P̂D[pnu(u), pde(u)] with respect to U is expressed as

∂P̂D

∂U
=

b∑
ℓ=1

α̂ℓ
∂ĥℓ
∂U
− 1

2

b∑
ℓ,ℓ′=1

α̂ℓα̂ℓ′
∂Ĥℓ,ℓ′

∂U
, (8)

where α̂ is given by Eq.(5) and

∂ĥℓ
∂U

=
1

nnu

nnu∑
i=1

∂ψℓ(u
nu
i )

∂U
, (9)

∂Ĥℓ,ℓ′

∂U
=

1

nde

nde∑
j=1

(
∂ψℓ(u

de
j )

∂U
ψℓ′(u

de
j ) + ψℓ(u

de
j )
∂ψℓ′(u

de
j )

∂U

)
, (10)

∂ψℓ(u)

∂U
= − 1

σ2
(u− cℓ)(x− c′ℓ)⊤ψℓ(u). (11)

c′ℓ (∈ Rd) is a pre-image of cℓ (∈ Rm):

cℓ = Uc
′
ℓ.

A proof of the above lemma is provided in Appendix C. Note that {α̂ℓ}bℓ=1 in Eq.(8)

depend on Û through Ĥ and ĥ in Eq.(5), which was taken into account when deriving
the gradient (see Appendix C). A plain gradient update rule is then given as

U ←− U + t
∂P̂D

∂U
,

where t (> 0) is a learning rate. t may be chosen in practice by some approximate line
search method such as Armijo’s rule (Patriksson, 1999) or backtracking line search (Boyd
& Vandenberghe, 2004).

A naive gradient update does not necessarily fulfill the orthonormality UU⊤ = Im,
where Im is the m-dimensional identity matrix. Thus, after every gradient step, we
need to orthonormalize U by, e.g., the Gram-Schmidt process (Golub & Loan, 1996) to
guarantee its orthonormality. However, this may be rather time-consuming.
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3.3.2 Natural Gradient Algorithm

In the Euclidean space, the ordinary gradient ∂P̂D
∂U

gives the steepest direction. On the
other hand, in the current setup, the matrix U is restricted to be a member of the Stiefel
manifold Sdm(R):

Sdm(R) := {U ∈ Rm×d | UU⊤ = Im}.

On a manifold, it is known that, not the ordinary gradient, but the natural gradient
(Amari, 1998) gives the steepest direction. The natural gradient ∇P̂D(U) at U is the

projection of the ordinary gradient ∂P̂D
∂U

onto the tangent space of Sdm(R) at U .
If the tangent space is equipped with the canonical metric, i.e., for any G and G′ in

the tangent space,

⟨G,G′⟩ = 1

2
tr
(
G⊤G′) , (12)

the natural gradient is given by

∇P̂D(U ) =
1

2

(
∂P̂D

∂U
−U ∂P̂D

∂U

⊤

U

)
.

Then the geodesic from U to the direction of the natural gradient ∇P̂D(U ) over Sdm(R)
can be expressed using t ∈ R as

U t := U exp

{
t

(
U⊤∂P̂D

∂U
− ∂P̂D

∂U

⊤

U

)}
,

where ‘exp’ for a matrix denotes the matrix exponential, i.e., for a square matrix T ,

exp(T ) :=
∞∑
k=0

1

k!
T k. (13)

Thus, line search along the geodesic in the natural gradient direction is equivalent to
finding a maximizer from

{U t | t ≥ 0}.

More details of geometric structure of the Stiefel manifold can be found in Nishimori and
Akaho (2005).

A natural gradient update rule is then given as

U ←− U t,

where t (> 0) is the learning rate. Since the orthonormality of U is automatically satisfied
in the natural gradient method, it would be computationally more efficient than the
plain gradient method. However, optimizing the m× d matrix U is still computationally
expensive.



Direct Density-ratio Estimation with Dimensionality Reduction 15

Hetero-distributional

subspace

Rotation across

the subspace

Rotation within

the subspace

Figure 6: In the hetero-distributional subspace search, rotation which changes the sub-
space only matters (the solid arrow); rotation within the subspace (dotted arrow) can be
ignored since this does not change the subspace. Similarly, rotation within the orthogonal
complement of the hetero-distributional subspace can also be ignored (not depicted in the
figure).

3.3.3 Givens Rotation

Another simple strategy for optimizing U is to rotate the matrix in the plane spanned
by two coordinate axes (which is called the Givens rotations ; see Golub & Loan, 1996).
That is, we randomly choose a two-dimensional subspace spanned by the i-th and j-th
variables, and rotate the matrix U within this subspace:

U ←− R(i,j)
θ U ,

where R
(i,j)
θ is the rotation matrix by angle θ within the subspace spanned by the i-th

and j-th variables. R
(i,j)
θ is equal to the identity matrix except that its elements (i, i),

(i, j), (j, i), and (j, j) form a two-dimensional rotation matrix:[
[R

(i,j)
θ ]i,i [R

(i,j)
θ ]i,j

[R
(i,j)
θ ]j,i [R

(i,j)
θ ]j,j

]
=

[
cos θ sin θ

− sin θ cos θ

]
.

The rotation angle θ (0 ≤ θ ≤ π) may be optimized by some secant method (Press et al.,
1992).

As shown above, the update rule of the Givens rotations is computationally very
efficient. However, since the update direction is not optimized as in the plain/natural
gradient methods, the Givens-rotation method could be potentially less efficient as an
optimization strategy.

3.3.4 Subspace Rotation

Since we are searching for a subspace, rotation within the subspace does not have any
influence on the objective value P̂D (see Figure 6). This implies that the number of
parameters to be optimized in the gradient algorithm can be reduced.
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For a skew-symmetric matrix M (∈ Rd×d), i.e., M⊤ = −M , rotation of U can be
expressed as follows (Plumbley, 2005):

[
Im Om,(d−m)

]
exp(M )

[
U

V

]
,

where Od,d′ is the d× d′ matrix with all zeros, and exp(M ) is the matrix exponential of
M (see Eq.(13)). M = Od,d (i.e., exp(Od,d) = Id) corresponds to no rotation. Here we
update U through the matrix M .

Let us adopt Eq.(12) as the inner product in the space of skew-symmetric matrices.
Then we have the following lemma.

Lemma 3 The derivative of P̂D with respect to M at M = Od,d is given by

∂P̂D

∂M

∣∣∣∣∣
M=Od,d

=

[
Om,m

∂P̂D
∂U
V ⊤

−(∂P̂D
∂U
V ⊤)⊤ O(d−m),(d−m)

]
. (14)

A proof of the above lemma is provided in Appendix D. The block structure of Eq.(14)
has an intuitive explanation: the non-zero off-diagonal blocks correspond to the rotation
angles between the hetero-distributional subspace and its orthogonal complement which
do affect the objective function P̂D. On the other hand, the derivative of rotation within
the two subspaces vanishes because this does not change the objective value. Thus the
variables to be optimized are only the angles corresponding to the non-zero off-diagonal

blocks ∂P̂D
∂U
V ⊤, which includes only m(d − m) variables. In contrast, the plain/natural

gradient algorithms optimize the matrix U , which contains md variables. Thus, when m
is large, the subspace rotation approach may be computationally more efficient than the
plain/natural gradient algorithms.

The gradient ascent update rule of M is given by

M ←− t
∂P̂D

∂M

∣∣∣∣∣
M=Od,d

,

where t is a step-size. Then U is updated as

U ←−
[
Im Om,(d−m)

]
exp(M )

[
U

V

]
.

The conjugate gradient method (Golub & Loan, 1996) may be used for the update ofM .
Following the update of U , its counterpart V also needs to be updated accordingly

since the hetero-distributional subspace and its complement specified by U and V should
be orthogonal to each other (see Figure 4). This can be achieved by setting

V ←−
[
φ1 φ2 · · · φd−m

]⊤
,

where φ1,φ2, . . . ,φd−m are orthonormal basis vectors in the orthogonal complement of
the hetero-distributional subspace.
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3.4 Proposed Algorithm: D3-LHSS

Finally, we estimate the density ratio in the hetero-distributional subspace detected by
the above LHSS method.

A notable fact of the LHSS algorithm is that the density ratio estimator in the hetero-
distributional subspace has already been obtained during the hetero-distributional sub-
space search procedure. Thus, we do not need an additional estimation procedure—our
final solution is simply given by

r̂(x) =
b∑
ℓ=1

α̂ℓψℓ(Ûx),

where Û is a projection matrix obtained by the LHSS algorithm. {α̂ℓ}bℓ=1 are the learned

parameters for Û , which have been obtained and used when computing the gradient (see
Lemma 2).

This expression implies that if the dimensionality is not reduced (i.e., m = d), the
proposed method agrees with the original uLSIF (see Section 2.2). Thus, the proposed
method could be regarded as a natural extension of uLSIF to high-dimensional data.

Given the true dimensionalitym of the hetero-distributional subspace, we can estimate
the hetero-distributional subspace by the LHSS algorithm. When m is unknown, we may
choose the best dimensionality based on the CV score of the uLSIF estimator. We refer
to our proposed procedure D3-LHSS (D-cube LHSS; Direct Density-ratio estimation with
Dimensionality reduction via Least-squares Hetero-distributional Subspace Search).

The complete procedure of D3-LHSS is summarized in Figure 7. A MATLAB R⃝ im-
plementation of D3-LHSS is available from

‘http://sugiyama-www.cs.titech.ac.jp/~sugi/software/D3LHSS/’.

4 Experiments

In this section, we investigate the experimental performance of the proposed method.
We employ the subspace rotation algorithm explained in Section 3.3.4 in our D3-LHSS
implementation. In uLSIF, the number of parameters is fixed to b = 100; the Gaussian
width σ and the regularization parameter λ are chosen based on cross-validation.

4.1 Illustrative Examples

First, we illustrate how the D3-LHSS algorithm behaves.
As explained in Section 1, the previous D3 method, D3-LFDA/uLSIF (Sugiyama et al.,

2010a), has two potential weaknesses:

• The component u inside the hetero-distributional subspace and its complementary
component v are assumed to be statistically independent (cf. Section 3.1).
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Input: Two sets of samples {xnu
i }nnu

i=1 and {xde
j }

nde
j=1 on Rd

Output: Density ratio estimator r̂(x)

For each reduced dimension m = 1, 2, . . . , d
Initialize embedding matrix Um (∈ Rm×d);
Repeat until Um converges

Choose Gaussian width σ and regularization parameter λ by CV;
Update U by some optimization method (see Section 3.3);

end

Obtain embedding matrix Ûm and corresponding density-ratio estimator r̂m(x);
Compute its CV value as a function of m;

end
Choose the best reduced dimensionality m̂ that minimizes the CV score;
Set r̂(x) = r̂m̂(x);

Figure 7: Pseudo code of D3-LHSS.

• Separability of samples drawn from two distributions implies that the two distri-
butions are different, but non-separability does not necessarily imply that the two
distributions are equivalent. Thus, D3-LFDA/uLSIF may not be able to detect the
subspace in which the two distributions are different, but samples are not really
separable.

Here, through numerical examples, we illustrate these weaknesses of D3-LFDA/uLSIF,
and show these problems can be overcome by D3-LHSS. Let us consider two-dimensional
examples (i.e., d = 2), and suppose that the two densities pnu(x) and pde(x) are different
only in the one-dimensional subspace (i.e., m = 1) spanned by (1, 0)⊤:

x = (x(1), x(2))⊤ = (u, v)⊤,

pnu(x) = p(v|u)pnu(u),
pde(x) = p(v|u)pde(u).

Let nnu = nde = 1000. We use the following three datasets:

“Rather-separate” dataset (Figure 8):

p(v|u) = p(v) = N(v; 0, 12),

pnu(u) = N(u; 0, 0.52),

pde(u) = 0.5N(u;−1, 12) + 0.5N(u; 1, 12),

where N(u;µ, σ2) denotes the Gaussian density with mean µ and variance σ2 with
respect to u. This is an easy and simple dataset for the purpose of illustrating the
usefulness of dimensionality reduction in density ratio estimation.
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“Highly-overlapped” dataset (Figure 9):

p(v|u) = p(v) = N(v; 0, 12),

pnu(u) = N(u; 0, 0.62),

pde(u) = N(u; 0, 1.22).

Since v is independent of u, D3-LFDA/uLSIF is still applicable in principle. How-
ever, unu and ude are highly overlapped and are not clearly separable. Thus this
dataset would be hard for D3-LFDA/uLSIF.

“Dependent” dataset (Figure 10):

p(v|u) = N(v;u, 12),

pnu(u) = N(u; 0, 0.52),

pde(u) = 0.5N(u;−1, 12) + 0.5N(u; 1, 12).

In this dataset, the conditional distribution p(v|u) is common, but the marginal
distributions pnu(v) and pde(v) are different. Since v is not independent of u, this
dataset would be out of scope for D3-LFDA/uLSIF.

The true hetero-distributional subspace for the “rather-separate” dataset is depicted
by the dotted line in Figure 8(a); the solid line and the dashed line depict the hetero-
distributional subspace found by LHSS and LFDA with reduced dimensionality m = 1,
respectively. This graph shows that LHSS and LFDA both give very good estimates of
the true hetero-distributional subspace. In Figure 8(c), Figure 8(d), and Figure 8(e),
density ratio functions estimated by the plain uLSIF without dimensionality reduction,
D3-LFDA/uLSIF, and D3-LHSS for the “rather-separate” dataset are depicted. These
graphs show that both D3-LHSS and D3-LFDA/uLSIF give much better estimates of the
density ratio function (see Figure 8(b) for the profile of the true density ratio function)
than the plain uLSIF without dimensionality reduction. Thus, the usefulness of dimen-
sionality reduction in density ratio estimation was illustrated.

For the “highly-overlapped” dataset (Figure 9), LHSS gives a reasonable estimate of
the hetero-distributional subspace, while LFDA is highly erroneous due to less separability.
As a result, the density ratio function obtained by D3-LFDA/uLSIF does not reflect the
true redundant structure appropriately. On the other hand, D3-LHSS still works well.

Finally, for the “dependent” dataset (Figure 10), LHSS gives an accurate estimate of
the hetero-distributional subspace. However, LFDA gives a highly biased solution since
the marginal distributions pnu(v) and pde(v) are no longer common in the “dependent”
dataset. Consequently, the density ratio function obtained by D3-LFDA/uLSIF is highly
erroneous. In contrast, D3-LHSS still works very well for the “dependent” dataset.

The experimental results for the “highly-overlapped” and “dependent” datasets illus-
trated typical failure modes of LFDA, and LHSS was shown to be able to successfully
overcome these weaknesses of LFDA.
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Figure 8: “Rather-separate” dataset.
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Figure 9: “Highly-overlapped” dataset.
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Figure 10: “Dependent” dataset.
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4.2 Evaluation on Artificial Data

Next, we systematically compare the performance of the proposed D3-LHSS with that of
the plain uLSIF and D3-LFDA/uLSIF for high-dimensional artificial data.

For the three datasets used in the previous experiments, we increase the entire dimen-
sionality as d = 2, 3, . . . , 10 by adding dimensions consisting of standard normal noise.
The dimensionality of the hetero-distributional subspace is estimated based on the CV
score of uLSIF. We evaluate the error of a density ratio estimator r̂(x) by

Error :=
1

2

∫
(r̂(x)− r(x))2 pde(x)dx, (15)

which uLSIF tries to minimize (see Section 2.2).
The left graphs in Figure 11 show the density-ratio estimation error averaged over

100 runs as functions of the entire input dimensionality d. The best method in terms
of the mean error and comparable methods according to the t-test (Henkel, 1979) at the
significance level 1% are specified by ‘◦’; otherwise methods are specified by ‘×’.

These plots show that, while the error of the plain uLSIF increases rapidly as the entire
dimensionality d increases, that of the proposed D3-LHSS is kept moderate. Consequently,
the proposed method consistently outperforms the plain uLSIF. D3-LHSS is comparable
to D3-LFDA/uLSIF for the “rather-separate” dataset, and D3-LHSS significantly out-
performs D3-LFDA/uLSIF for the “highly-overlapped” and “dependent” datasets. Thus,
D3-LHSS was overall shown to compare favorably with the other approaches.

The choice of the dimensionality of the hetero-distributional subspace in D3-LHSS
and D3-LFDA/uLSIF is illustrated in the middle and right columns of Figure 11; the
darker the color is, the more frequently the corresponding dimensionality is chosen. The
plots show that D3-LHSS reasonably identifies the true dimensionality (m = 1 in the cur-
rent setup) for all the three datasets, while D3-LFDA/uLSIF performs well only for the
“rather-separate” dataset. This happened because D3-LFDA/uLSIF cannot find appro-
priate low-dimensional subspaces for the “highly-overlapped” and “dependent” datasets,
and therefore the CV scores misled the choice of subspace dimensionality.

4.3 Inlier-based Outlier Detection for Benchmark Data

Finally, we apply the proposed method to inlier-based outlier detection, i.e., finding out-
liers in an evaluation dataset based on another “model” dataset that only contains inliers
(see Section A.2 for details).

We use the USPS hand-written digit dataset taken from the UCI Machine Learning
Repository (Asuncion & Newman, 2007). We regard samples in the class ‘1’ as inliers
and samples in other classes as outliers. We randomly take 500 samples from the class
‘1’, and assign them to the model dataset. Then we randomly take 500 samples from
the class ‘1’ without overlap, and 25 samples from one of the other classes. From these
samples, density ratio estimation is performed and the outlier score is computed. Since
the USPS hand-written digit dataset contains 10 classes (i.e., from ‘0’ to ‘9’), we have 9
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Figure 11: Top: “Rather-separate” dataset. Middle: “Highly-overlapped” dataset. Bot-
tom: “Dependent” dataset. Left: Density-ratio estimation error (15) averaged over 100
runs as a function of the entire data dimensionality d. The best method in terms of the
mean error and comparable methods according to the t-test at the significance level 1%
are specified by ‘◦’; otherwise methods are specified by ‘×’. Center: The dimensionality
of the hetero-distributional subspace chosen by CV in LHSS. Right: The dimensionality
of the hetero-distributional subspace chosen by CV in LFDA.
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different tasks in total. The dimensionality of the samples is d = 256. For the D3-LHSS
and D3-LFDA/uLSIF methods, we choose the dimensionality of the hetero-distributional
subspace from m = 1, 2, . . . , 5 by cross-validation.

When evaluating the performance of outlier detection methods, it is important to take
into account both the detection rate (i.e., the amount of true outliers an outlier detection
algorithm can find) and the detection accuracy (i.e., the amount of true inliers an outlier
detection algorithm misjudges as outliers). Since there is a trade-off between the detection
rate and the detection accuracy, we adopt the area under the ROC curve (AUC) as our
error metric (Bradley, 1997).

The mean and standard deviation of AUC scores over 100 runs with different random
seeds are summarized in Table 1, where the best method in terms of the mean AUC
and comparable methods according to the t-test at the significance level 1% are speci-
fied by ‘◦’. The table shows that the proposed D3-LHSS tends to outperform the plain
uLSIF and D3-LFDA/uLSIF. It is also note worthy that D3-LFDA/uLSIF is actually
outperformed by the plain uLSIF—the baseline method. This is perhaps because the
numerator and denominator datasets are highly overlapped in outlier detection scenarios,
so D3-LFDA/uLSIF performs rather poorly (cf. Figure 9)

We also evaluate the performance of each method for an additional test dataset which
is not used for density ratio estimation. The test dataset consists of 100 randomly chosen
samples from the class ‘1’ and 5 randomly chosen samples from the outlier class (which
is the same as the evaluation dataset). The results are summarized in Table 2, showing
that the advantage of the proposed method is still valid in this more challenging scenario.

5 Conclusions

Density ratios are becoming quantities of interest in the machine learning and data mining
communities since it can be used for solving various important data processing tasks such
as non-stationarity adaptation, outlier detection, and feature selection (Sugiyama et al.,
2009; Sugiyama et al., 2011). In this paper, we tackled a challenging problem of estimating
density ratios in high-dimensional spaces, and gave a new procedure in the framework of
Direct Density-ratio estimation with Dimensionality reduction (D3; D-cube). The basic
idea of D3 is to identify a subspace called the hetero-distributional subspace, in which two
distributions (corresponding to the numerator and denominator of the density ratio) are
different.

In the existing approach of D3 (Sugiyama et al., 2010a), the hetero-distributional sub-
space is identified by finding a subspace in which samples drawn from the two distributions
are maximally separated from each other. To this end, supervised dimensionality reduc-
tion methods such as local Fisher discriminant analysis (LFDA) (Sugiyama, 2007) are
utilized. This approach was shown to work well when the components inside and outside
the hetero-distributional subspace are statistically independent, and samples drawn from
the two distributions are highly separable from each other in the hetero-distributional
subspace.
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Table 1: Outlier detection for the USPS hand-written digit dataset (d = 256). The
means (and standard deviations in the bracket) of AUC scores over 100 runs for the
evaluation dataset are summarized. The best method in terms of the mean AUC value
and comparable methods according to the t-test at the significance level 1% are specified
by ‘◦’. The means (and standard deviations in the bracket) of the chosen dimensionality
by cross-validation are also included in the table.

D3-LHSS D3-LFDA/uLSIF Plain uLSIF
Data AUC m̂ AUC m̂ AUC

Digit 2 ◦0.956 (0.035) 4.3 (0.8) 0.889 (0.104) 1.7 (1.1) 0.902 (0.038)
Digit 3 ◦0.967 (0.032) 4.4 (0.8) 0.868 (0.136) 1.8 (1.1) 0.921 (0.039)
Digit 4 ◦0.907 (0.061) 4.4 (0.9) 0.825 (0.104) 1.4 (0.6) 0.870 (0.036)
Digit 5 ◦0.965 (0.037) 4.3 (0.9) 0.882 (0.109) 1.6 (0.9) 0.906 (0.037)
Digit 6 ◦0.974 (0.022) 4.4 (0.8) 0.891 (0.090) 1.7 (1.1) 0.941 (0.029)
Digit 7 ◦0.924 (0.072) 4.4 (0.9) 0.642 (0.139) 2.3 (1.4) 0.878 (0.035)
Digit 8 ◦0.929 (0.051) 4.2 (1.0) 0.804 (0.147) 1.8 (1.1) 0.860 (0.033)
Digit 9 ◦0.942 (0.048) 4.6 (0.7) 0.790 (0.136) 1.8 (1.1) 0.892 (0.035)
Digit 0 ◦0.986 (0.019) 4.2 (0.9) 0.920 (0.071) 1.9 (0.8) ◦0.979 (0.019)

Average 0.950 (0.051) 4.4 (0.9) 0.835 (0.142) 1.8 (1.1) 0.905 (0.049)

Table 2: Outlier detection for the USPS hand-written digit dataset (d = 256). The means
(and standard deviations in the bracket) of AUC scores over 100 runs for unlearned test
dataset are summarized.

D3-LHSS D3-LFDA/uLSIF Plain uLSIF
Data AUC m̂ AUC m̂ AUC

Digit 2 ◦0.946 (0.047) 4.3 (0.8) 0.817 (0.132) 1.7 (1.1) 0.905 (0.044)
Digit 3 ◦0.953 (0.061) 4.4 (0.8) 0.780 (0.161) 1.8 (1.1) 0.924 (0.045)
Digit 4 ◦0.880 (0.094) 4.4 (0.9) 0.767 (0.121) 1.4 (0.6) ◦0.870 (0.063)
Digit 5 ◦0.954 (0.057) 4.3 (0,9) 0.813 (0.142) 1.6 (0.9) 0.906 (0.047)
Digit 6 ◦0.959 (0.052) 4.4 (0.8) 0.806 (0.141) 1.7 (1.1) 0.939 (0.040)
Digit 7 ◦0.909 (0.079) 4.4 (0.9) 0.689 (0.173) 2.3 (1.4) 0.877 (0.056)
Digit 8 ◦0.903 (0.078) 4.2 (1.0) 0.741 (0.173) 1.8 (1.1) 0.861 (0.049)
Digit 9 ◦0.932 (0.072) 4.6 (0.7) 0.793 (0.128) 1.8 (1.1) 0.894 (0.054)
Digit 0 ◦0.982 (0.039) 4.2 (0.9) 0.859 (0.098) 1.9 (0.8) ◦0.982 (0.022)

Average 0.935 (0.073) 4.4 (0.9) 0.785 (0.150) 1.8 (1.1) 0.906 (0.060)
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However, as illustrated in Section 4.1, violation of these conditions can cause signif-
icant performance degradation. This problem can be overcome in principle by finding a
subspace such that two conditional distributions are similar to each other in its comple-
mentary subspace. However, comparing conditional distributions is a cumbersome task.
To cope with this problem, we first proved that the hetero-distributional subspace can
be characterized as the subspace in which two marginal distributions are maximally dif-
ferent under the Pearson divergence (Lemma 1). Based on this lemma, we proposed a
new algorithm for finding the hetero-distributional subspace called Least-squares Hetero-
distributional Subspace Search (LHSS). Since a density-ratio estimation method is uti-
lized during hetero-distributional subspace search in the LHSS procedure, an additional
density-ratio estimation step is not needed after hetero-distributional subspace search.
Thus, two steps in the previous method (hetero-distributional subspace search followed
by density ratio estimation in the identified subspace) were merged into a single step (see
Figure 2). The proposed single-shot procedure, D3-LHSS (D-cube LHSS), was shown to
be able to overcome the limitations of the D3-LFDA/uLSIF approach through experi-
ments.

In the experiments in Section 4, we employed the subspace rotation algorithm ex-
plained in Section 3.3.4 in our D3-LHSS implementation. Although we experimentally
found that the subspace rotation algorithm is useful, this does not necessarily mean that
subspace rotation is always the best performing algorithm. Other approaches explained in
Section 3.3 may also be useful in some situations. Further investigating the optimization
issue is an important future work.

We gave a general proof of the data processing inequality (Lemma 1) for a class of f -
divergences (Ali & Silvey, 1966; Csiszár, 1967). Thus, the hetero-distributional subspace
is characterized not only by the Pearson divergence, but also by any f -divergences. Since
a framework of density ratio estimation for f -divergences has been provided in Nguyen
et al. (2010), an interesting future direction is to develop hetero-distributional subspace
search methods for general f -divergences.
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A Usage of Density Ratios in Data Processing

We are interested in estimating density ratios since they are useful in various data pro-
cessing tasks. Here, we briefly review possible usage of density ratios (Sugiyama et al.,
2009; Sugiyama et al., 2011).

A.1 Covariate Shift Adaptation

Covariate shift (Shimodaira, 2000) is a situation in supervised learning where input dis-
tributions change between the training and test phases, but the conditional distribution of
outputs given inputs remains unchanged. Extrapolation (i.e., prediction is made outside
the training region) would be a typical example of covariate shift. Standard learning tech-
niques such as maximum likelihood estimation are biased under covariate shift; the bias
caused by covariate shift can be asymptotically canceled by weighting the loss function ac-
cording to the importance2 (Shimodaira, 2000; Zadrozny, 2004; Sugiyama & Müller, 2005;
Sugiyama et al., 2007; Quiñonero-Candela et al., 2009; Sugiyama & Kawanabe, 2010).

2The test input density over the training input density is referred to as the importance in the context
of importance sampling (Fishman, 1996).
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The basic idea of covariate shift adaptation is summarized in the following importance
sampling identity:

E
pnu(x)

[loss(x)] =

∫
loss(x)pnu(x)dx

=

∫
loss(x)r(x)pde(x)dx = E

pde(x)
[loss(x)r(x)].

That is, the expectation of a function loss(x) over pnu(x) can be computed by the
importance-weighted expectation of loss(x) over pde(x). Similarly, standard model selec-
tion criteria such as cross-validation (Stone, 1974; Wahba, 1990) or Akaike’s information
criterion (Akaike, 1974) lose their unbiasedness under covariate shift; proper unbiasedness
can be recovered by modifying the methods based on importance weighting (Shimodaira,
2000; Zadrozny, 2004; Sugiyama & Müller, 2005; Sugiyama et al., 2007). Furthermore,
the performance of active learning or the experiment design, i.e., the training input dis-
tribution is designed by the user to enhance the generalization performance, could also
be improved by the use of the importance (Wiens, 2000; Kanamori & Shimodaira, 2003;
Sugiyama, 2006; Sugiyama & Nakajima, 2009).

Thus, the importance plays a central role in covariate shift adaptation, and density-
ratio estimation methods could be used for reducing the estimation bias under covariate
shift. Examples of successful real-world applications include brain-computer interface
(Sugiyama et al., 2007), robot control (Hachiya et al., 2009a; Akiyama et al., 2010;
Hachiya et al., 2009b), speaker identification (Yamada et al., 2010), age prediction from
face images (Ueki et al., 2010), wafer alignment in semiconductor exposure apparatus
(Sugiyama & Nakajima, 2009), and natural language processing (Tsuboi et al., 2009). A
similar importance-weighting idea also plays a central role in domain adaptation (Storkey
& Sugiyama, 2007) and multi-task learning (Bickel et al., 2008).

A.2 Inlier-based Outlier Detection

Let us consider an outlier detection problem of finding irregular samples in a dataset
(“evaluation dataset”) based on another dataset (“model dataset”) that only contains
regular samples. Defining the density ratio over the two sets of samples, we can see
that the density ratio values for regular samples are close to one, while those for outliers
tend to be significantly deviated from one. Thus, the density ratio value could be used
as an index of the degree of outlyingness (Hido et al., 2008; Smola et al., 2009; Hido
et al., 2010). Since the evaluation dataset usually has a wider support than the model
dataset, we regard the evaluation dataset as samples corresponding to pde(x) and the
model dataset as samples corresponding to pnu(x). Then outliers tend to have smaller
density-ratio values (i.e., close to zero). As such, density-ratio estimation methods could
be employed in outlier detection scenarios.

A similar idea could be used for change-point detection in time-series (Kawahara &
Sugiyama, 2009).
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A.3 Conditional Density Estimation

Suppose we are given n i.i.d. paired samples {(xk,yk)}nk=1 drawn from a joint distribution
with density q(x,y). The goal is to estimate the conditional density q(y|x). When the
domain of x is continuous, conditional density estimation is not straightforward since a
naive empirical approximation cannot be used (Bishop, 2006; Takeuchi et al., 2009).

In the context of density ratio estimation, let us regard {(xk,yk)}nk=1 as samples
corresponding to the numerator of the density ratio and {xk}nk=1 as samples corresponding
to the denominator of the density ratio, i.e., we consider the density ratio defined by

r(x,y) :=
q(x,y)

q(x)
= q(y|x),

where q(x) is the marginal density of x. Then a density-ratio estimation method directly
gives an estimate of the conditional density (Sugiyama et al., 2010c).

When y is categorical, the same method can be used for probabilistic classification
(Sugiyama, 2010).

A.4 Mutual Information Estimation

Suppose we are given n i.i.d. paired samples {(xk,yk)}nk=1 drawn from a joint distribution
with density q(x,y). Let us denote the marginal densities of x and y by q(x) and q(y),
respectively. Then mutual information MI(X,Y ) between random variables X and Y is
defined by

MI(X,Y ) :=

∫∫
q(x,y) log

q(x,y)

q(x)q(y)
dxdy,

which plays a central role in information theory (Cover & Thomas, 2006).
Let us regard {(xk,yk)}nk=1 as samples corresponding to the numerator of the density

ratio and {(xk,yk′)}nk,k′=1 as samples corresponding to the denominator of the density
ratio, i.e.,

r(x,y) :=
q(x,y)

q(x)q(y)
.

Then mutual information can be directly estimated using a density-ratio estimation
method (Suzuki et al., 2008; Suzuki et al., 2009b). General divergence functionals can
also be estimated in a similar way (Nguyen et al., 2010).

Mutual information can be used for measuring independence between random vari-
ables (Kraskov et al., 2004; Hulle, 2005) since it vanishes if and only if X and Y are
statistically independent. Thus density-ratio estimation methods are applicable, e.g.,
to variable selection (Suzuki et al., 2009a), independent component analysis (Suzuki &
Sugiyama, 2009), supervised dimensionality reduction (Suzuki & Sugiyama, 2010), and
causal inference (Yamada & Sugiyama, 2010).
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B Proof of Lemma 1

Here, let us consider the f -divergences (Ali & Silvey, 1966; Csiszár, 1967) and prove a
similar inequality for a broader class of divergences. An f -divergence is defined using a
convex function f such that f(1) = 0 as

If [pnu(x), pde(x)] :=

∫
pde(x)f

(
pnu(x)

pde(x)

)
dx.

The f -divergence is reduced to the Kullback-Leibler divergence if

f(t) = − log t,

and the Pearson divergence if

f(t) =
1

2
(t− 1)2.

Using Jensen’s inequality (Bishop, 2006), we have

If [pnu(x), pde(x)] =

∫∫
pde(v|u)pde(u)f

(
pnu(v|u)pnu(u)
pde(v|u)pde(u)

)
dudv

≥
∫
pde(u)f

(∫
pde(v|u)

pnu(v|u)pnu(u)
pde(v|u)pde(u)

dv

)
du

=

∫
pde(u)f

(
pnu(u)

pde(u)

∫
pnu(v|u)dv

)
du

=

∫
pde(u)f

(
pnu(u)

pde(u)

)
du

= If [pnu(u), pde(u)].

Thus, we have

If [pnu(x), pde(x)]− If [pnu(u), pde(u)] ≥ 0,

and the equality holds if and only if pnu(v|u) = pde(v|u).

C Proof of Lemma 2

For

F = (Ĥ + λIb)
−1,

P̂D[pnu(u), pde(u)] can be expressed as

P̂D[pnu(u), pde(u)] =
1

2

b∑
ℓ=1

α̂ℓĥℓ −
1

2

=
1

2

b∑
ℓ,ℓ′=1

ĥℓĥℓ′Fℓ,ℓ′ −
1

2
.
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Thus, its partial derivative with respect to U is given by

∂P̂D

∂U
=

b∑
ℓ=1

α̂ℓ
∂ĥℓ
∂U

+
1

2

b∑
ℓ,ℓ′=1

ĥℓĥℓ′
∂Fℓ,ℓ′

∂U
. (16)

Since

∂B−1

∂t
= −B−1∂B

∂t
B−1

holds for a square invertible matrix B (Petersen & Pedersen, 2008), it holds that

∂F

∂Uk,k′
= −(Ĥ + λIb)

−1 ∂Ĥ

∂Uk,k′
(Ĥ + λIb)

−1.

Then we have

b∑
ℓ,ℓ′=1

ĥℓĥℓ′

[
∂F

∂Uk,k′

]
ℓ,ℓ′

= −ĥ
⊤
(Ĥ + λIb)

−1 ∂Ĥ

∂Uk,k′
(Ĥ + λIb)

−1ĥ

= −
b∑

ℓ,ℓ′=1

α̂ℓα̂ℓ′

[
∂Ĥ

∂Uk,k′

]
ℓ,ℓ′

.

Substituting this into Eq.(16), we obtain Eq.(8). Eqs.(9) and (10) are clear from Eqs.(3)
and (2). Finally, we prove Eq.(11). The basis function ψℓ(u) can be expressed as

ψℓ(u) = ψℓ(Ux) = exp

(
−∥U (x− c′ℓ)∥2

2σ2

)
.

Since ∂a⊤A⊤Aa
∂A

= 2Aa⊤a (Petersen & Pedersen, 2008), we have

∂ψℓ(u)

∂U
= − 1

σ2
U(x− c′ℓ)(x− c′ℓ)⊤ exp

(
−∥U(x− c′ℓ)∥2

2σ2

)
,

from which we obtain Eq.(11).

D Proof of Lemma 3

The proof we provide here essentially follows the argument in Plumbley (2005).
For

W =

[
U

V

]
, W 0 =

[
U 0

V 0

]
,
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rotation W from some W 0 can be expressed as follows (Plumbley, 2005):

W = exp(M)W 0, (17)

where M is some skew-symmetric matrix. Let us consider the space of skew-symmetric
matrices, and let E be an element in that space with unit length. Then the gradient of

a function P̂D(M ) with respect to M , ∂P̂D
∂M

, in this space is given as an element whose

inner product
⟨
∂P̂D
∂M

,E
⟩
is equal to the derivative of P̂D(M ) in the directionE (Plumbley,

2005). Thus, for M = tE with t being a scalar, we have

∂P̂D(tE)

∂t
=

⟨
∂P̂D(M )

∂M
,E

⟩
.

If we adopt Eq.(12) as the inner product of the space of skew-symmetric matrices, we
have

∂P̂D(tE)

∂t
=

1

2
tr

(
∂P̂D(M )

∂M
E⊤

)
. (18)

On the other hand, from Eq.(17) with M = tE, ∂W
∂t

can be expressed as follows
(Petersen & Pedersen, 2008):

∂W

∂t
= E exp(tE)W 0 = EW .

Then ∂P̂D(tE)
∂t

can be expressed as

∂P̂D(tE)

∂t
= tr

(
∂P̂D

∂W

∂W

∂t

⊤
)

= tr

(
∂P̂D

∂W
W⊤E⊤

)
. (19)

Since E is skew-symmetric, it can be expressed as

E =
1

2
E +

1

2
E =

1

2
E − 1

2
E⊤.

Substituting this into Eq.(19), we have

∂P̂D(tE)

∂t
=

1

2
tr

(
∂P̂D

∂W
W⊤E⊤

)
− 1

2
tr

(
∂P̂D

∂W
W⊤E

)

=
1

2
tr

(
∂P̂D

∂W
W⊤E⊤

)
− 1

2
tr

(
W

∂P̂D

∂W

⊤

E⊤

)

=
1

2
tr

((
∂P̂D

∂W
W⊤ −W ∂P̂D

∂W

⊤)
E⊤

)
. (20)
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Combining Eqs.(18) and (20), we have

∂P̂D

∂M
=
∂P̂D

∂W
W⊤ −W ∂P̂D

∂W

⊤

=

∂P̂D
∂U
U⊤ −U

(
∂P̂D
∂U

)⊤
∂P̂D
∂U
V ⊤ −U

(
∂P̂D
∂V

)⊤
∂P̂D
∂V
U⊤ − V

(
∂P̂D
∂U

)⊤
∂P̂D
∂V
V ⊤ − V

(
∂P̂D
∂V

)⊤
 . (21)

Eq.(11) implies that ∂ψℓ(u)
∂U

U⊤ is symmetric. Then Eqs.(8) and (9) imply that ∂ĥℓ
∂U
U⊤

and
∂Ĥℓ,ℓ′

∂U
U⊤ are also symmetric. Consequently, Eq.(10) imply that ∂P̂D

∂U
U⊤ is symmetric:

∂P̂D

∂U
U⊤ =

(
∂P̂D

∂U
U⊤

)⊤

= U
∂P̂D

∂U

⊤

.

Since the range of V is assumed to be orthogonal to the range of U (see Section 3.1), P̂D
is independent of V , and thus we have

∂P̂D

∂V
= O(d−m),d,

where Od,d′ is the d× d′ matrix with all zeros. Then Eq.(21) yields

∂P̂D

∂M
=

[
Om,m

∂P̂D
∂U
V ⊤

−(∂P̂D
∂U
V ⊤)⊤ O(d−m),(d−m)

]
,

which concludes the proof.
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Density ratio estimation has gathered a great deal of attention recently since it can
be used for various data processing tasks. In this paper, we consider three meth-
ods of density ratio estimation: (A) the numerator and denominator densities are
separately estimated and then the ratio of the estimated densities is computed, (B)
a logistic regression classifier discriminating denominator samples from numerator
samples is learned and then the ratio of the posterior probabilities is computed,
and (C) the density ratio function is directly modeled and learned by minimizing
the empirical Kullback-Leibler divergence. We first prove that when the numerator
and denominator densities are known to be members of the exponential family, (A)
is better than (B) and (B) is better than (C). Then we show that once the model
assumption is violated, (C) is better than (A) and (B). Thus in practical situations
where no exact model is available, (C) would be the most promising approach to
density ratio estimation.
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1 Introduction

The ratio of two probability density functions has been demonstrated to be useful in
various data processing tasks [21], such as non-stationarity adaptation [18, 35, 23, 22,
17, 27], outlier detection [7, 19], conditional density estimation [26], feature selection
[31, 30], feature extraction [29], and independent component analysis [28]. Thus accurately
estimating the density ratio is an important and challenging research topic in the machine
learning and data mining communities.

A naive approach to density ratio estimation is (A) density ratio estimation by separate
maximum likelihood density estimation—first the numerator and denominator densities
are separately estimated and then the ratio of the estimated densities is computed. How-
ever, density estimation is substantially more difficult than density ratio estimation and
the above two-shot process of first estimating the densities and then taking their ratio
is thought to be less accurate. To cope with this problem, various alternative methods
have been developed recently, which allow one to estimate the density ratio without going
through density estimation [16, 8, 15, 25, 10].

In this paper, we consider the following two methods in addition to the method (A):
(B) density ratio estimation by logistic regression [16, 3, 1]—a logistic regression classifier
discriminating numerator samples from denominator samples is used for density ratio esti-
mation, and (C) direct density ratio estimation by empirical Kullback-Leibler divergence
minimization [15, 25]—the density ratio function is directly modeled and learned. The
goal of this paper is to theoretically compare the accuracy of these three density ratio
estimation schemes.

We first prove that when the numerator and denominator densities are known to be
members of the exponential family, (A) is better than (B) and (B) is better than (C). The
fact that (A) is better than (B) could be regarded as an extension of the existing result
for binary classification [5]—estimating data generating densities by maximum likelihood
estimation has higher statistical efficiency than logistic regression in classification scenar-
ios. On the other hand, the fact that (B) is better than (C) follows from the fact that
(B) has the smallest asymptotic variance in a class of semi-parametric estimators [16].

We then show that when the model assumption is violated, (C) is better than (A)
and (B). Our statement is that the estimator obtained by (C) converges to the projection
of the true density ratio function onto the target parametric model (i.e., the optimal ap-
proximation in the model), while the estimators obtained by (A) and (B) do not generally
converge to the projection.

Since model misspecification would be a usual situation in practice, (C) is the most
promising approach in density ratio estimation. In a regression framework, an asymptotic
analysis with a similar spirit exists [14].

2 Density Ratio Estimation

In this section, we formulate the problem of density ratio estimation and review three
density ratio estimators.
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2.1 Problem Formulation

Let X (⊂ Rd) be the data domain and suppose we are given independent and identically
distributed (i.i.d.) samples {xnu

i }ni=1 drawn from a distribution with density p∗nu(x) and
i.i.d. samples {xde

j }nj=1 drawn from another distribution with density p∗de(x):

{xnu
i }ni=1

i.i.d.∼ p∗nu(x),

{xde
j }nj=1

i.i.d.∼ p∗de(x).

The subscripts ‘nu’ and ‘de’ denote ‘numerator’ and ‘denominator’, respectively. We
assume that the latter density p∗de(x) is strictly positive, i.e.,

p∗de(x) > 0, ∀x ∈ X .

The problem we address in this paper is to estimate the density ratio

r∗(x) :=
p∗nu(x)

p∗de(x)

from samples {xnu
i }ni=1 and {xde

j }nj=1.
The goal of this paper is to theoretically compare the performance of the following

three density ratio estimators:

(A) Density ratio estimation by separate maximum likelihood density estimation (see
Section 2.3 for details),

(B) Density ratio estimation by logistic regression [16, 3, 1] (see Section 2.4 for details),

(C) Direct density ratio estimation by empirical Kullback-Leibler divergence minimiza-
tion [15, 25] (see Section 2.5 for details).

2.2 Measure of Accuracy

Let us consider the unnormalized Kullback-Leibler divergence [2] from the true density
p∗nu(x) to its estimator r̂(x)p∗de(x):

UKL(p∗nu∥r̂ · p∗de) :=
∫
p∗nu(x) log

p∗nu(x)

r̂(x)p∗de(x)
dx− 1 +

∫
r̂(x)p∗de(x)dx. (1)

UKL(p∗nu(x)∥r̂(x)p∗de(x)) is non-negative for all r̂ and vanishes if and only if r̂ = r∗. If
r̂(x)p∗de(x) is normalized to be a probability density function, i.e.,∫

r̂(x)p∗de(x)dx = 1,
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then the unnormalized Kullback-Leibler divergence is reduced to the ordinary Kullback-
Leibler divergence [12]:

KL(p∗nu∥r̂ · p∗de) :=
∫
p∗nu(x) log

p∗nu(x)

r̂(x)p∗de(x)
dx. (2)

In our theoretical analysis, we use the expectation of UKL(p∗nu∥r̂ · p∗de) over {xnu
i }ni=1 and

{xde
j }nj=1 as the measure of accuracy of a density ratio estimator r̂(x):

J(r̂) := E [UKL(p∗nu∥r̂ · p∗de)] , (3)

where E denotes the expectation over {xnu
i }ni=1 and {xde

j }nj=1.
In the rest of this section, the three methods of density ratio estimation we are dealing

with are described in detail.

2.3 Method (A): Density Ratio Estimation by Separate Maxi-
mum Likelihood Density Estimation

For p∗nu(x) and p
∗
de(x), two parametric models pnu(x;θnu) and pde(x;θde) such that∫

pnu(x;θnu)dx = 1, ∀θnu ∈ Θnu,

pnu(x;θnu) ≥ 0, ∀x ∈ X , ∀θnu ∈ Θnu,∫
pde(x;θde)dx = 1 ∀θde ∈ Θde,

pde(x;θde) ≥ 0 ∀x ∈ X , ∀θde ∈ Θde,

are prepared. Then the maximum likelihood estimators θ̂nu and θ̂de are computed sepa-
rately from {xnu

i }ni=1 and {xde
j }nj=1:

θ̂nu := argmax
θnu∈Θnu

[
n∑
i=1

log pnu(x
nu
i ;θnu)

]
,

θ̂de := argmax
θde∈Θde

[
n∑
j=1

log pde(x
de
j ;θde)

]
.

Note that the maximum likelihood estimators θ̂nu and θ̂de minimize the empirical
Kullback-Leibler divergences from the true densities p∗nu(x) and p∗de(x) to their models
pnu(x;θnu) and pde(x;θde), respectively:

θ̂nu = argmin
θnu∈Θnu

[
1

n

n∑
i=1

log
p∗nu(x

nu
i )

pnu(xnu
i ;θnu)

]
,

θ̂de = argmin
θde∈Θde

[
1

n

n∑
j=1

log
p∗de(x

de
j )

pnu(xde
j ;θde)

]
.
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Finally, a density ratio estimator is constructed by taking the ratio of the estimated
densities:

r̂A(x) :=
pnu(x; θ̂nu)

pde(x; θ̂de)

(
1

n

n∑
j=1

pnu(x
de
j ; θ̂nu)

pde(xde
j ; θ̂de)

)−1

,

where the estimator is normalized so that

1

n

n∑
j=1

r̂A(x
de
j ) = 1.

2.4 Method (B): Density Ratio Estimation by Logistic Regres-
sion

Let us assign a selector variable y = ‘nu’ to samples drawn from p∗nu(x) and y = ‘de’ to
samples drawn from p∗de(x), i.e., the two densities are written as

p∗nu(x) = q∗(x|y = ‘nu’),

p∗de(x) = q∗(x|y = ‘de’).

Since

q∗(x|y = ‘nu’) =
q∗(y = ‘nu’|x)q∗(x)

q∗(y = ‘nu’)
,

q∗(x|y = ‘de’) =
q∗(y = ‘de’|x)q∗(x)

q∗(y = ‘de’)
,

the density ratio can be expressed in terms of y as

r∗(x) =
q∗(y = ‘nu’|x)
q∗(y = ‘nu’)

q∗(y = ‘de’)

q∗(y = ‘de’|x)

=
q∗(y = ‘nu’|x)
q∗(y = ‘de’|x)

,

where we used the fact that

q∗(y = ‘nu’) = q∗(y = ‘de’) =
1

2

in the current setup.
The conditional probability q∗(y|x) could be approximated by discriminating {xnu

i }ni=1

from {xde
j }nj=1 using a logistic regression classifier, i.e., for a parametric function r(x;θ)

such that

r(x;θ) ≥ 0, ∀x ∈ X , ∀θ ∈ Θ, (4)



Theoretical Analysis of Density Ratio Estimation 6

the conditional probabilities q∗(y = ‘nu’|x) and q∗(y = ‘de’|x) are modeled by

q(y = ‘nu’|x;θ) = r(x;θ)

1 + r(x;θ)
,

q(y = ‘de’|x;θ) = 1

1 + r(x;θ)
.

Then the maximum likelihood estimator θ̂B is computed from {xnu
i }ni=1 and {xde

j }nj=1:

θ̂B := argmax
θ∈Θ

[
n∑
i=1

log
r(xnu

i ;θ)

1 + r(xnu
i ;θ)

+
n∑
j=1

log
1

1 + r(xde
j ;θ)

]
. (5)

Note that the maximum likelihood estimator θ̂B minimizes the empirical Kullback-Leibler
divergences from the true density q∗(x, y) to its estimator q(y|x;θ)q∗(x):

θ̂B = argmin
θ∈Θ

[
1

2n

n∑
i=1

log
q∗(xnu

i , y = ‘nu’)

q(y = ‘nu’|xnu
i ;θ)q∗(xnu

i )

+
1

2n

n∑
j=1

log
q∗(xde

j , y = ‘de’)

q(y = ‘de’|xde
j ;θ)q∗(xde

j )

]
.

Finally, a density ratio estimator is constructed by taking the ratio of q(y = ‘nu’|x; θ̂B)
and q(y = ‘de’|x; θ̂B) with proper normalization:

r̂B(x) :=
q(y = ‘nu’|x; θ̂B)
q(y = ‘de’|x; θ̂B)

(
1

n

n∑
j=1

q(y = ‘nu’|xde
j ; θ̂B)

q(y = ‘de’|xde
j ; θ̂B)

)−1

= r(x; θ̂B)

(
1

n

n∑
j=1

r(xde
j ; θ̂B)

)−1

.

2.5 Method (C): Direct Density Ratio Estimation by Empirical
Unnormalized Kullback-Leibler Divergence Minimization

For the density ratio function r∗(x), a parametric model r(x;θ) such that Eq.(4) is fulfilled

is prepared. Then the following estimator θ̂C is computed from {xnu
i }ni=1 and {xde

j }nj=1:

θ̂C := argmax
θ∈Θ

[
n∑
i=1

log r(xnu
i ;θ)−

n∑
j=1

r(xde
j ;θ)

]
. (6)

Note that θ̂C minimizes the empirical unnormalized Kullback-Leibler divergence from the
true density p∗nu(x) to its estimator r̂(x)p∗de(x):

θ̂C = argmin
θ∈Θ

[
1

n

n∑
i=1

log
p∗nu(x

nu
i )

r̂(xnu
i )p∗de(x

nu
i )
− 1 +

1

n

n∑
j=1

r̂(xde
j )

]
.
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Finally, a density ratio estimator is obtained by

r̂C(x) := r(x; θ̂C)

(
1

n

n∑
j=1

r(xde
j ; θ̂C)

)−1

.

3 Exponential Models

In our theoretical analysis, we employ the exponential model, which is explained in this
section.

3.1 Exponential Models for Densities and Ratios

We use the following exponential model for the densities p∗nu(x) and p
∗
de(x).

p(x;θ) = h(x) exp
{
θ⊤ξ(x)− φ(θ)

}
, θ ∈ Θ, (7)

where h(x) is a base measure, ξ(x) is a sufficient statistic, φ(θ) is a normalization factor,
and ⊤ denotes the transpose of a vector [13]. The exponential model includes various
popular models as special cases, e.g., the normal, exponential, gamma, chi-square, and
beta distributions.

Correspondingly, we use the following exponential model for the ratio r∗(x).

r(x;θ, θ0) = exp
{
θ0 + θ

⊤ξ(x)
}
, θ ∈ Θ, θ0 ∈ R. (8)

3.2 Method (A)

For the exponential model (7), the maximum likelihood estimators θ̂nu and θ̂de are given
by

θ̂nu = argmax
θnu∈Θ

[
n∑
i=1

θ⊤ξ(xnu
i )− nφ(θ)

]
,

θ̂de = argmax
θde∈Θ

[
n∑
j=1

θ⊤ξ(xde
j )− nφ(θ)

]
,

where irrelevant constants are ignored. The density ratio estimator r̂A(x) for the expo-
nential density model is expressed as

r̂A(x) = exp
{
θ̂

⊤
A ξ(x)

}(1

n

n∑
j=1

exp
{
θ̂

⊤
A ξ(x

de
j )
})−1

,

where

θ̂A := θ̂nu − θ̂de.
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One can use the other estimator such as

r̃A(x) = exp
{
θ̂

⊤
A ξ(x)− φ(θ̂nu) + φ(θ̂de)

}
instead of r̂A(x). We compare r̂A(x) to Method (B) and Method (C), since the same
normalization factor as r̂A(x) appears in the other methods as shown below. This fact
facilitates the theoretical analysis.

3.3 Method (B)

For the exponential model (8), the optimization problem (5) is expressed as

(θ̂B, θ̂B,0) = argmax
(θ,θ0)∈Θ×R

[
n∑
i=1

log
r(xnu

i ;θ, θ0)

1 + r(xnu
i ;θ, θ0)

+
n∑
j=1

log
1

1 + r(xde
j ;θ, θ0)

]

= argmax
(θ,θ0)∈Θ×R

[
n∑
i=1

log
exp

{
θ0 + θ

⊤ξ(xnu
i )
}

1 + exp
{
θ0 + θ

⊤ξ(xnu
i )
}

+
n∑
j=1

log
1

1 + exp
{
θ0 + θ

⊤ξ(xde
j )
}].

The density ratio estimator r̂B(x) for the exponential ratio model is expressed as

r̂B(x) = exp
{
θ̂
⊤
Bξ(x)

}( 1

n

n∑
j=1

exp
{
θ̂
⊤
Bξ(x

de
j )
})−1

.

3.4 Method (C)

For the exponential model (8), the optimization problem (6) is expressed as

(θ̂C, θ̂C,0) = argmax
(θ,θ0)∈Θ×R

[
1

n

n∑
i=1

log r(xnu
i ;θ, θ0)−

1

n

n∑
j=1

r(xde
i ;θ, θ0)

]

= argmax
(θ,θ0)∈Θ×R

[
1

n

n∑
i=1

(θ0 + θ
⊤ξ(xnu

i ))− 1

n

n∑
j=1

exp
{
θ0 + θ

⊤ξ(xde
j )
}]

. (9)

The density ratio estimator r̂C(x) for the exponential ratio model is expressed as

r̂C(x) = exp
{
θ̂
⊤
Cξ(x)

}( 1

n

n∑
j=1

exp
{
θ̂
⊤
Cξ(x

de
j )
})−1

.



Theoretical Analysis of Density Ratio Estimation 9

4 Accuracy Analysis for Correctly Specified Expo-

nential Models

In this section, we theoretically analyze the accuracy of the above three density ratio
estimators under the assumption that the true densities p∗nu(x) and p∗de(x) both belong
to the exponential family, i.e., there exist θ∗nu ∈ Θ and θ∗de ∈ Θ such that

p∗nu(x) = p(x;θ∗nu),

p∗de(x) = p(x;θ∗de).

Since the ratio of two exponential densities also belongs to the exponential model, the
above assumption implies that there exist θ∗ ∈ Θ and θ∗0 ∈ R such that

r∗(x) = r(x;θ∗, θ∗0). (10)

It is straightforward to extended the results in this section to general parametric models,
since we focus on the first-order asymptotics of the estimators. An arbitrary parametric
model p(x;θ) has the same first-order asymptotics as the exponential model of the form

pexp(x;θ) ∝ exp{log p(x;θ∗) + (θ − θ∗)⊤∇ log p(x;θ∗)}

around the parameter θ∗. Thus the same theoretical property holds.
First, we analyze the asymptotic behavior of J(r̂A). Then we have the following lemma

(proofs of all lemmas, theorems, and corollaries are provided in Appendix).

Lemma 1 J(r̂A) can be asymptotically expressed as

J(r̂A) =
1

2n

[
dimΘ + tr

(
F (θ∗nu)F (θ∗de)

−1
)
+ PE(p∗de∥p∗nu)

]
+O(n−3/2),

where O(·) denotes the asymptotic order. F (θ) denote the Fisher information matrix of
the exponential model p(x;θ):

F (θ) :=

∫
∇ log p(x;θ)∇ log p(x;θ)⊤p(x;θ)dx,

where ∇ denotes the partial differential operator with respect to θ. PE(p∥q) denotes the
Pearson divergence of two densities p and q defined as

PE(p∥q) := 1

2

∫
(p(x)− q(x))2

p(x)
dx. (11)

Next, we investigate the asymptotic behavior of J(r̂B) and J(r̂C). Let y be the selector
variable taking ‘nu’ or ‘de’ as defined in Section 2.4. The statistical model of the joint
probability for z = (x, y) is defined as

q(z;θ, θ0) = q(y|x;θ, θ0)×
p∗nu(x) + p∗de(x)

2
, (12)
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where q(y|x;θ, θ0) is the conditional probability of y such that

q(y = ‘nu’|x;θ, θ0) =
r(x;θ, θ0)

1 + r(x;θ, θ0)

=
exp

{
θ0 + θ

⊤ξ(x)
}

1 + exp
{
θ0 + θ

⊤ξ(x)
} ,

q(y = ‘de’|x;θ, θ0) =
1

1 + r(x;θ, θ0)

=
1

1 + exp
{
θ0 + θ

⊤ξ(x)
} .

The Fisher information matrix of the model (12) is denoted as

F̃ (θ, θ0) ∈ R(dimΘ+1)×(dimΘ+1).

The submatrix of F̃ (θ, θ0) formed by the first (dimΘ) rows and the first (dimΘ) columns
is defined as ∫

∇ log q(z;θ, θ0)∇ log q(z;θ, θ0)
⊤q(z;θ, θ0)dz.

The inverse matrix of F̃ (θ, θ0) is expressed as

F̃ (θ, θ0)
−1 =

(
H11(θ, θ0) h12(θ, θ0)
h12(θ, θ0)

⊤ h22(θ, θ0)

)
, (13)

where H11(θ, θ0) is a (dimΘ)× (dimΘ) matrix. Then we have the following lemmas.

Lemma 2 J(r̂B) can be asymptotically expressed as

J(r̂B) =
1

2n

[
tr (F (θ∗nu)H11(θ

∗, θ∗0)) + PE(p∗de∥p∗nu)

]
+O(n−3/2),

where (θ∗, θ∗0) is defined in Eq.(10).

Lemma 3 J(r̂C) can be asymptotically expressed as

J(r̂C) =
1

2n

[
dimΘ + tr

(
F (θ∗nu)

−1G
)
+ PE(p∗de∥p∗nu)

]
+O(n−3/2),

where

G :=

∫
r∗(x)(ξ(x)− ηnu)(ξ(x)− ηnu)

⊤p∗nu(x)dx.
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Based on the above lemmas, we compare the accuracy of the three methods. For the
accuracy of (A) and (B), we have the following theorem.

Theorem 4 Asymptotically, the inequality

J(r̂A) ≤ J(r̂B)

holds.

Thus the method (A) is more accurate than the method (B) in terms of the expected
unnormalized Kullback-Leibler divergence (3). Theorem 4 may be regarded as an ex-
tension of the result for binary classification [5]: estimating data generating Gaussian
densities by maximum likelihood estimation has high statistical efficiency than logistic
regression in the sense of classification error rate.

Next, we compare the accuracy of (B) and (C).

Theorem 5 Asymptotically, the inequality

J(r̂B) ≤ J(r̂C)

holds.

Thus the method (B) is more accurate than the method (C) in terms of the expected
unnormalized Kullback-Leibler divergence (3). This inequality is a direct consequence of
the paper by Qin [16]. In that paper, it was shown that the method (B) has the smallest
asymptotic variance in a class of semi-parametric estimators. It is easy to see the method
(C) is included in the class.

Finally, we compare the accuracy of (A) and (C). From Theorem 4 and Theorem 5,
we immediately have the following corollary.

Corollary 6 The inequality

J(r̂A) ≤ J(r̂C)

holds.

It was advocated that one should avoid solving more difficult intermediate problems
when solving a target problem [33]. This statement is sometimes referred to as “Vapnik’s
principle”, and the support vector machine [4] would be a successful example of this
principle—instead of estimating a data generation model, it directly models the decision
boundary which is sufficient for pattern recognition.

If we followed Vapnik’s principle, directly estimating the ratio r∗(x) would be more
promising than estimating the two densities p∗nu(x) and p

∗
de(x) since knowing p∗nu(x) and

p∗de(x) implies knowing r∗(x) but not vice versa; indeed, r∗(x) cannot be uniquely decom-
posed into p∗nu(x) and p

∗
de(x). Thus Corollary 6 is at a glance counter-intuitive. However,

Corollary 6 would be reasonable since the method (C) does not make use of the knowledge
that each density is exponential, but only the knowledge that the ratio is exponential.
Thus the method (A) can utilize the a priori model information more effectively. Thanks
to the additional knowledge that the both densities belong to the exponential model, the
intermediate problems (i.e., density estimation) were actually made easier in terms of
Vapnik’s principle.
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5 Accuracy Analysis for Misspecified Exponential

Models

In this section, we theoretically analyze the approximation error of the three density
ratio estimators for misspecified exponential models, i.e., the true densities and ratio are
not necessarily included in the exponential models. The unnormalized Kullback-Leibler
divergence is employed to measure the approximation error.

First, we study the convergence of the method (A). Let pnu(x) and pde(x) be the
projections of the true densities p∗nu(x) and p

∗
de(x) onto the model p(x;θ) in terms of the

Kullback-Leibler divergence (2):

pnu(x) := p(x;θnu),

pde(x) := p(x;θde),

where

θnu := argmin
θ∈Θ

[∫
p∗nu(x) log

p∗nu(x)

p(x;θ)
dx

]
,

θde := argmin
θ∈Θ

[∫
p∗de(x) log

p∗de(x)

p(x;θ)
dx

]
.

This means that pnu(x) and pde(x) are the optimal approximations to p∗nu(x) and p
∗
de(x)

in the model p(x;θ) in terms of the Kullback-Leibler divergence. Let

rA(x) :=
pnu(x)

pde(x)
.

Since the ratio of two exponential densities also belongs to the exponential model, there
exists θA ∈ Θ such that

rA(x) = r(x;θA, θ̄A,0).

Then we have the following lemma.

Lemma 7 r̂A converges in probability to rA as n→∞.

Next, we investigate the convergence of the method (B). Let q∗(x, y) be the joint
probability defined as

q∗(x, y) = q∗(y|x)× p∗nu(x) + p∗de(x)

2
, (14)

where q∗(y|x) is the conditional probability of y such that

q∗(y = ‘nu’|x) = r∗(x)

1 + r∗(x)
,

q∗(y = ‘de’|x) = 1

1 + r∗(x)
.
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The model (12) is used to estimate q∗(x, y), and let q(x, y) be the projection of the
true density q∗(x, y) onto the model (12) in terms of the Kullback-Leibler divergence (2):

q(x, y) := q(x, y;θB, θ̄B,0), (15)

where

(θB, θ̄B,0) := argmin
(θ,θ0)∈Θ×R

∫ ∑
y∈{‘nu’,‘de’}

q∗(x, y) log
q∗(y|x)

q(y|x;θ, θ0)
dx

 .
This means that q(x, y) is the optimal approximation to q∗(x, y) in the model

q(y|x;θ, θ0)
p∗nu(x) + p∗de(x)

2

in terms of the Kullback-Leibler divergence. Let

rB(x) := r(x;θB, θ̄B,0).

Then we have the following lemma.

Lemma 8 r̂B converges in probability to rB as n→∞.

Finally, we study the convergence of the method (C). Suppose that the model
r(x;θ, θ0) in Eq.(8) is employed. Let rC(x) be the projection of the true ratio function
r∗(x) onto the model r(x;θ, θ0) in terms of the unnormalized Kullback-Leibler divergence
(1):

rC(x) := r(x;θC, θ̄C,0),

where

(θC, θ̄C,0) := argmin
(θ,θ0)∈Θ×R

[∫
p∗nu(x) log

r∗(x)

r(x;θ, θ0)
dx− 1 +

∫
p∗de(x)r(x;θ, θ0)dx

]
. (16)

This means that rC(x) is the optimal approximation to r∗(x) in the model r(x;θ) in terms
of the unnormalized Kullback-Leibler divergence. Then we have the following lemma.

Lemma 9 r̂C converges in probability to rC as n→∞.

Based on the above lemmas, we investigate the relation among the three methods.
Lemma 9 implies that the method (C) is consistent to the optimal approximation rC.
However, as we will show below, the methods (A) and (B) are not consistent to the
optimal approximation rC in general. Let us measure the deviation of a density ratio
function r′ from r by

D(r′, r) :=

∫
p∗de(x) (r

′(x)− r(x))2 dx.

Then we have the following theorem.
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Theorem 10 The inequalities

D(rA, rC) ≥
∣∣∣∣∫ p∗de(x) rA(x)dx− 1

∣∣∣∣2 ,
D(rB, rC) ≥

∣∣∣∣∫ p∗de(x) rB(x)dx− 1

∣∣∣∣2
hold. More generally, for any r in the exponential model,

D(r, rC) ≥
∣∣∣∣∫ p∗de(x) r(x)dx− 1

∣∣∣∣2 (17)

holds.

When the model is misspecified, p∗de(x) rA(x) and p
∗
de(x) rB(x) are not probability densi-

ties in general. Then Theorem 10 implies that the method (A) and the method (B) are
not consistent to the optimal approximation rC.

Since model misspecification would be a usual situation in practice, the method (C)
is the most promising approach in density ratio estimation.

Finally, for the consistency of the method (A), we also have the following additional
result.

Corollary 11 If p∗de(x) belongs to the exponential model (7), i.e., there exists θde ∈ Θ
such that

p∗de(x) = p(x;θde),

then

rA = rC

holds even when p∗nu(x) does not belong to the exponential model (7).

This corollary means that, as long as p∗de(x) is correctly specified, the method (A) is
still consistent.

6 Conclusions

In this paper, we theoretically investigated the accuracy of three density ratio estimation
approaches: (A) density ratio estimation by separate maximum likelihood density estima-
tion, (B) density ratio estimation by logistic regression, and (C) direct density ratio es-
timation by empirical Kullback-Leibler divergence minimization. Intuitively, the method
(C) seems to be better than the other approaches due to “Vapnik’s principle”—one should
not solve more difficult intermediate problems (density estimation in the current context)
when solving a target problem (density ratio estimation in the current context).
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However, as we proved in Section 4, the method (A) is more accurate than the other
approaches when the numerator and denominator densities are known to be members
of the exponential family. This result is at first sight counter-intuitive, but it would be
reasonable because the methods (B) and (C) do not make use of the knowledge that each
density is exponential, but only the knowledge that their ratio is exponential. Thus the
method (A) can utilize the a priori model information more effectively than the other
methods. We note that this result is not contradictory to Vapnik’s principle since the
additional knowledge that the densities belong to the exponential model is utilized to
make the intermediate problems (density estimation) substantially easier.

On the other hand, once the correct model assumption is not fulfilled, the method (C)
was shown to be consistent to the optimal approximation in the model, while the methods
(A) and (B) are not consistent in general (see Section 5). The fact that the direct method
outperforms the other approaches in the absence of the additional knowledge would follow
Vapnik’s principle.

It seems to be a common phenomenon in various situations that a method which
works optimally for correctly specified models performs poorly for misspecified models
and conversely a method which works well for misspecified models performs poorly for
correctly specified models. For example, in active learning (or the experiment design),
the traditional variance-only approach works optimally for correctly specified models [6].
However, it was shown that the traditional method works poorly once the correct model
assumption is slightly violated [20]. To cope with this problem, various active learning
methods which do not require the correct model assumption have been developed and
shown to work better than the traditional method for misspecified models [34, 11, 20, 9,
24]. However, these methods cannot outperform the traditional method when the model
is correctly specified. Thus the performance loss for correctly specified models would be
the price one has to pay for acquiring robustness against model misspecification.

Model misspecification would almost always occur in practice, so developing methods
for misspecified models is crucial. Based on these observations, we conclude that the
direct density ratio approach (C) is the most promising density ratio estimation method.
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A Asymptotic Expansion of Measure of Accuracy

First, we show some fundamental results used for proving Lemma 1, Lemma 2, and Lemma
3.

Using the Taylor expansion

log(1 + t) = t− t2

2
+O(t3),
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we have the following expansion:

log
p∗nu(x)

r̂(x)p∗de(x)
= log

r∗(x)

r̂(x)

= − log
r̂(x)

r∗(x)

= −
(
r̂(x)

r∗(x)
− 1

)
+

1

2

(
r̂(x)

r∗(x)
− 1

)2

+Op

(∣∣∣∣ r̂(x)r∗(x)
− 1

∣∣∣∣3
)
,

where Op(·) denotes the stochastic order. Substituting this expansion into the unnormal-
ized Kullback-Leibler divergence UKL(p∗nu∥r̂ · p∗de), we obtain

UKL(p∗nu∥r̂ · p∗de) = PE(p∗nu∥r̂ · p∗de) +O(∥r̂/r∗ − 1∥3),
(18)

where ‘PE’ denotes the Pearson divergence defined by Eq.(11) and ∥r̂/r∗ − 1∥ is defined
as

∥r̂/r∗ − 1∥ :=
(∫

p∗nu(x)|r̂(x)/r∗(x)− 1|2dx
)1/2

.

Under a regularity condition of asymptotic statistics, the expectation E [∥r̂/r∗ − 1∥3] is
of order O(n−3/2):

E
[
∥r̂/r∗ − 1∥3

]
= O(n−3/2).

See Theorem 5.23 in [32] for the details of the regularity condition on general M-estimators.
Hence, the measure of accuracy J(r̂) can be represented as

J(r̂) = E [PE(p∗nu∥r̂ · p∗de)] +O(n−3/2). (19)

Then we have the following lemma.

Lemma 12 (Asymptotics of measure of accuracy) Let θ̂ be an estimator of the pa-
rameter θ∗ in r∗, and r̂(x) be the estimator defined as

r̂(x) := exp
{
θ̂

⊤
ξ(x)

}( 1

n

n∑
j=1

exp
{
θ̂

⊤
ξ(xde

j )
})−1

.

Then, the measure of accuracy of r̂ is asymptotically given as

J(r̂) =
1

2
tr
(
F (θ∗nu) · E

[
δθδθ⊤

])
+

1

2n
PE(p∗de∥p∗nu) +O(n−3/2), (20)

where δθ denotes the deviation of θ̂ from the parameter θ∗:

δθ = θ̂ − θ∗.
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Proof: The probabilistic order of δθ is Op(n−1/2). Let ηnu be

ηnu :=

∫
ξ(x)p∗nu(x)dx.

Using the Taylor expansion

exp(t) = 1 + t+O(t2),
log(1 + t) = t+O(t2),

we have the following the asymptotic expansion of r̂:

log r̂(x) = log
r∗(x) exp

{
δθ⊤ξ(x)

}
1
n

∑n
j=1 r

∗(xde
j ) exp

{
δθ⊤ξ(xde

j )
}

= log r∗(x) + δθ⊤ξ(x)

− log

{
1 +

(
1

n

n∑
j=1

r∗(xde
j )− 1

)
+ δθ⊤ · 1

n

n∑
j=1

r∗(xde
j )ξ(xde

j ) +Op(n−1)

}

= log r∗(x) + δθ⊤(ξ(x)− ηnu)−

(
1

n

n∑
j=1

r∗(xde
j )− 1

)
+Op(n−1).

Therefore, we have

r̂(x)

r∗(x)
− 1 = δθ⊤(ξ(x)− ηnu)−

(
1

n

n∑
j=1

r∗(xde
j )− 1

)
+Op(n−1).

Substituting the above expression into the Pearson divergence in Eq.(19), we obtain

PE(p∗nu∥r̂ · p∗de) =
1

2

∫
p∗nu(x)

(
r̂(x)

r∗(x)
− 1

)2

dx

=
1

2
tr
(
F (θ∗nu)δθδθ

⊤)+ 1

2

(
1

n

n∑
j=1

(r∗(xde
j )− 1)

)2

+Op(n−3/2).

Therefore,

E [PE(p∗nu∥r̂ · p∗de)] =
1

2
tr
(
F (θ∗nu) · E

[
δθδθ⊤

])
+

1

2n

∫
p∗de(x)(r

∗(x)− 1)2dx

+O(n−3/2)

=
1

2
tr
(
F (θ∗nu) · E

[
δθδθ⊤

])
+

1

2n
PE(p∗de∥p∗nu) +O(n−3/2).

Applying Eq (18) to the above equation, we obtain Eq.(20).
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B Proof of Lemma 1

According to Lemma 12, we need to compute the asymptotic variance of estimator θ̂A
in order to compute the measure of accuracy of r̂A. Based on the standard asymptotic
statistics, the asymptotic variance of the maximum likelihood estimator for the exponen-
tial family is given as

√
n(θ̂nu − θ∗nu) ∼ N(0,F (θ∗nu)

−1),
√
n(θ̂de − θ∗de) ∼ N(0,F (θ∗de)

−1),

when the sample size n goes to infinity. Under the regularity condition of parametric
estimation, the bias of estimator is given as

E
[
θ̂nu − θ∗nu

]
= O(n−1),

E
[
θ̂de − θ∗de

]
= O(n−1).

Then, for

δθ̂A := θ̂A − (θ∗nu − θ∗de)
= (θ̂nu − θ∗nu)− (θ̂de − θ∗de),

we have

E
[
δθ̂Aδθ̂

⊤
A

]
=

1

n
F (θ∗nu)

−1 +
1

n
F (θ∗de)

−1 +O(n−3/2),

where we used the fact that θ̂nu and θ̂de are independent. Substituting the above asymp-
totic variance of δθ̂A into the first term of Eq.(20), we obtain

J(r̂A) =
1

2n

[
tr
(
F (θ∗nu)(F (θ∗nu)

−1 + F (θ∗de)
−1
)
) + PE(p∗de∥p∗nu)

]
+O(n−3/2),

=
1

2n

[
dimΘ + tr

(
F (θ∗nu)F (θ∗de)

−1
)
+ PE(p∗de∥p∗nu)

]
+O(n−3/2),

which concludes the proof.

C Proof of Lemma 2

Let (θ̂B, θ̂B,0) be the maximum likelihood estimator with the model (12). Let

δθ̂B := θ̂B − θ∗

= θ̂B − (θ∗nu − θ∗de).
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Based on the standard asymptotic statistics, the asymptotic variance of the maximum
likelihood estimator for the exponential family is given as

√
nδθB ∼ N (0,H11(θ

∗, θ∗0)),

when the sample size n goes to infinity. H11(θ, θ0) is the submatrix of the inverse matrix
of the Fisher information matrix as defined in Eq.(13) and (θ∗, θ∗0) is the parameter
corresponding to the density ratio r∗(x). Hence, the asymptotic variance of δθB is given
as

E
[
δθBδθ

⊤
B

]
=

1

n
H11(θ

∗, θ∗0) +O(n−3/2).

Substituting the asymptotic variance of δθ̂B into the first term of Eq.(20), we establish
the lemma.

D Proof of Lemma 3

By simple calculation, we find that the optimal solution (θ̂C, θ̂C,0) satisfies

θ̂C,0 = − log

(
1

n

n∑
j=1

exp
{
θ̂

⊤
C ξ(x

de
j )
})

.

The extremal condition for Eq.(9) with the above expression provides the following equa-
tion:

1

n

n∑
i=1

ξ(xnu
i ) =

∑n
j=1 exp

{
θ̂

⊤
C ξ(x

de
j )
}
ξ(xde

j )∑n
j=1 exp

{
θ̂

⊤
C ξ(x

de
j )
} . (21)

Let δθ̂C be

δθ̂C := θ̂C − θ∗

= θ̂C − (θ∗nu − θ∗de).

Then, Eq.(21) is represented as

1

n

n∑
i=1

ξ(xnu
i ) =

∑n
j=1 r

∗(xde
j ) exp

{
δθ̂

⊤
C ξ(x

de
j )
}
ξ(xde

j )∑n
j=1 r

∗(xde
j ) exp

{
δθ̂

⊤
C ξ(x

de
j )
} .

Using the Taylor expansion

exp(t) = 1 + t+O(t2),
1

1− t
= 1 + t+O(t2),
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the asymptotic expansion of the right-hand side of the above equation yields

1

n

n∑
i=1

ξ(xnu
i ) =

{
1

n

n∑
j=1

r∗(xde
j )ξ(xde

j ) +
1

n

n∑
j=1

r∗(xde
j )ξ(xde

j )ξ(xde
j )⊤δθ̂C

}

×

{
1−

(
1

n

n∑
j=1

r∗(xde
j )− 1

)
− 1

n

n∑
j=1

r∗(xde
j )ξ(xde

j )⊤δθ̂C

}
+Op(n−1)

=
1

n

n∑
j=1

r∗(xde
j )ξ(xde

j )− 1

n

n∑
j=1

r∗(xde
j )ξ(xde

j )

(
1

n

n∑
j′=1

r∗(xde
j′ )− 1

)

+

{
1

n

n∑
j=1

r∗(xde
j )ξ(xde

j )ξ(xde
j )⊤

− 1

n

n∑
j=1

r∗(xde
j )ξ(xde

j )
1

n

n∑
j′=1

r∗(xde
j′ )ξ(x

de
j′ )

⊤

}
δθ̂C +Op(n−1)

=
1

n

n∑
j=1

r∗(xde
j )ξ(xde

j )− (ηnu +Op(n−1/2))

(
1

n

n∑
j=1

r∗(xde
j )− 1

)
+ F (θ∗nu)δθ̂C +Op(n−1)

= ηnu +
1

n

n∑
j=1

r∗(xde
j )
(
ξ(xde

j )− ηnu

)
+ F (θ∗nu)δθ̂C +Op(n−1).

Hence, we obtain

F (θ∗nu)δθ̂C =
1

n

n∑
i=1

(ξ(xnu
i )− ηnu)−

1

n

n∑
j=1

r∗(xde
i )(ξ(xde

i )− ηnu) +Op(n−1). (22)

When the sample size goes to infinity, the central limit theorem provides

1√
n

n∑
i=1

(ξ(xnu
i )− ηnu)∼ N(0,F (θ∗nu)),

1√
n

n∑
j=1

r∗(xde
j )(ξ(xde

j )− ηnu)∼ N(0,G),

(23)

where G is the matrix defined in Lemma 3. Combining Eqs.(22) and (23), we obtain the

following expression of the asymptotic variance of δθ̂C:

E
[
δθ̂Cδθ̂

⊤
C

]
=

1

n
F (θ∗nu)

−1 +
1

n
F (θ∗nu)

−1GF (θ∗nu)
−1 +O(n−3/2).

Substituting the asymptotic variance of δθ̂C into the first term of Eq.(20), we establish
the lemma.



Theoretical Analysis of Density Ratio Estimation 21

E Proof of Theorem 4

We compare the coefficients of order O(n−1) in J(r̂A) and J(r̂B), and prove the following
inequality:

dimΘ + tr
(
F (θ∗nu)F (θ∗de)

−1
)
≤ tr (F (θ∗nu)H11(θ

∗, θ∗0)) . (24)

Let F̃ η(θ, θ0) be the Fisher information matrix of the logistic model

qη(y = ‘nu’|x;θ, θ0) =
exp

{
θ0 + θ

⊤(ξ(x)− η)
}

1 + exp
{
θ0 + θ

⊤(ξ(x)− η)
} ,

qη(y = ‘de’|x;θ, θ0) =
1

1 + exp
{
θ0 + θ

⊤(ξ(x)− η)
} , (25)

where η is a fixed vector. Let us represent F̃ η(θ, θ0)
−1 in a block form as

F̃ η(θ, θ0)
−1 =

(
Hη,11(θ, θ0) hη,12(θ, θ0)
hη,12(θ, θ0)

⊤ hη,22(θ, θ0)

)
.

When the functions 1, ξ1(x), . . . , ξk(x) are linearly independent, the maximum likelihood

estimator (mle) of θ for model (25) is given by θ̂B. The equality

θ0 + θ
⊤ξ(x) = θ̃0 + θ̃

⊤
(ξ(x)− η)

implies θ = θ̃ and θ0 = θ̃0− θ̃
⊤
η = θ̃0−θ ⊤η. Due to the equality θ = θ̃, we see that the

mle of θ is equal to that of θ̃, and hence, the variance is unchanged under the parameter
transformation, that is,

Hη,11(θ̃, θ̃0) =Hη,11(θ, θ0 + θ
⊤η) =H11(θ, θ0)

holds for any η. The Fisher information matrix F̃ η can be represented as

F̃ η(θ
∗, θ∗0 + θ

∗⊤η) =
1

2

∫
p∗nu(x)p

∗
de(x)

p∗nu(x) + p∗de(x)

(
ξ(x)− η

1

)(
(ξ(x)− η)⊤ 1

)
dx

=

(
F̃ η,11 f̃η,12

f̃
⊤
η,12 f̃η,22

)
.

The first equality is obtained by the straightforward calculation of the Fisher information
matrix. Applying the matrix inversion formula to the block form, we obtain

H11(θ
∗, θ∗0) =Hη,11(θ

∗, θ∗0 + θ
∗⊤η)

= F̃
−1

η,11 +
F̃

−1

η,11f̃η,12f̃
⊤
η,12F̃

−1

η,11

f̃η,22 − f̃
⊤
η,12F̃

−1

η,11f̃η,12

.
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Since F̃ η is positive definite, we have

f̃η,22 − f̃
⊤
η,12F̃

−1

η,11f̃η,12 > 0,

and hence, we obtain the inequality

H11(θ
∗, θ∗0) ≽ F̃

−1

η,11,

for any η. In the above formula, A ≽ B indicates the fact that the matrix A − B is
positive semidefinite. On the other hand, the inequalities

F̃ ηnu,11 =
1

2

∫
p∗nu(x)p

∗
de(x)

p∗nu(x) + p∗de(x)
(ξ(x)− ηnu)(ξ(x)− ηnu)

⊤dx

≼ 1

2

∫
p∗nu(x)(ξ(x)− ηnu)(ξ(x)− ηnu)

⊤dx

=
1

2
F (θ∗nu),

F̃ ηde,11 =
1

2

∫
p∗nu(x)p

∗
de(x)

p∗nu(x) + p∗de(x)
(ξ(x)− ηde)(ξ(x)− ηde)

⊤dx

≼ 1

2

∫
p∗de(x)(ξ(x)− ηde)(ξ(x)− ηde)

⊤dx

=
1

2
F (θ∗de)

hold. Therefore, we obtain

H11(θ
∗, θ∗0) ≽

1

2
F̃

−1

ηnu,11
+

1

2
F̃

−1

ηde,11

≽ F (θ∗nu)
−1 + F (θ∗de)

−1.

By multiplying F (θ∗nu) from the left-hand side and taking the trace of both sides, we
obtain the inequality (24).

F Proof of Theorem 10

We prove the general expression (17) for any r in the exponential model. The optimality
condition of Eq.(16) provides the equality∫

p∗de(x)rC(x)dx =

∫
p∗nu(x)dx = 1.

Hence, we have ∫
p∗de(x)(r(x)− rC(x))dx =

∫
p∗de(x)r(x)dx− 1.
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Applying the Schwarz inequality to the above equality, we obtain

D(r, rC) ≥
∣∣∣∣∫ p∗de(x) r(x)dx− 1

∣∣∣∣2 .
Thus, r is different from rC unless p∗de · r is a probability density.

G Proof of Corollary 11

The optimality condition of the method (A) provides the equality∫
p∗nu(x)ξ(x)dx =

∫
pnu(x)ξ(x)dx.

Substituting the equality pnu(x) = pde(x)rA(x) into the above expression, we have∫
p∗nu(x)ξ(x)dx =

∫
pde(x)rA(x)ξ(x)dx.

When p∗de belongs to the exponential model, we have p∗de = pde and thus, the equality∫
p∗nu(x)ξ(x)dx =

∫
p∗de(x)rA(x)ξ(x)dx

holds. The above equation is exactly the same as the optimality condition of Eq.(16) for
the method (C). Thus, rA = rC holds.
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Abstract

Accurately evaluating statistical independence among random variables is a key
element of Independent Component Analysis (ICA). In this paper, we employ a
squared-loss variant of mutual information as an independence measure and give its
estimation method. Our basic idea is to estimate the ratio of probability densities
directly without going through density estimation, by which a hard task of density
estimation can be avoided. In this density ratio approach, a natural cross-validation
procedure is available for hyper-parameter selection. Thus, all tuning parameters
such as the kernel width or the regularization parameter can be objectively opti-
mized. This is an advantage over recently developed kernel-based independence
measures and is a highly useful property in unsupervised learning problems such
as ICA. Based on this novel independence measure, we develop an ICA algorithm
named Least-squares Independent Component Analysis (LICA).

1 Introduction

The purpose of Independent Component Analysis (ICA) (Hyvärinen et al., 2001) is to
obtain a transformation matrix that separates mixed signals into statistically-independent
source signals. A direct approach to ICA is to find a transformation matrix such that
independence among separated signals is maximized under some independence measure
such as mutual information (MI).

∗A MATLAB R⃝ implementation of the proposed algorithm, LICA, is available from
‘http://www.simplex.t.u-tokyo.ac.jp/~s-taiji/software/LICA/index.html’.
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Various approaches to evaluating the independence among random variables from
samples have been explored so far. A naive approach is to estimate probability densities
based on parametric or non-parametric density estimation methods. However, finding
an appropriate parametric model is not easy without strong prior knowledge and non-
parametric estimation is not accurate in high-dimensional problems. Thus this naive
approach is not reliable in practice. Another approach is to approximate the negentropy
(or negative entropy) based on the Gram-Charlier expansion (Cardoso & Souloumiac,
1993; Comon, 1994; Amari et al., 1996) or the Edgeworth expansion (Hulle, 2008). An
advantage of this negentropy-based approach is that a hard task of density estimation is
not directly involved. However, these expansion techniques are based on the assumption
that the target density is close to normal and violation of this assumption can cause large
approximation error.

The above approaches are based on the probability densities of signals. Another
line of research that does not explicitly involve probability densities employs non-linear
correlation—signals are statistically independent if and only if all non-linear correlations
among the signals vanish. Following this line, computationally efficient algorithms have
been developed based on a contrast function (Jutten & Herault, 1991; Hyvärinen, 1999),
which is an approximation of negentropy or mutual information. However, these methods
require to pre-specify non-linearities in the contrast function, and thus could be inaccurate
if the predetermined non-linearities do not match the target distribution. To cope with
this problem, the kernel trick has been applied in ICA, which allows one to evaluate
all non-linear correlations in a computationally efficient manner (Bach & Jordan, 2002).
However, its practical performance depends on the choice of kernels (more specifically, the
Gaussian kernel width) and there seems no theoretically justified method to determine the
kernel width (see also Fukumizu et al., 2009). This is a critical problem in unsupervised
learning problems such as ICA.

In this paper, we develop a new ICA algorithm that resolves the problems mentioned
above. We adopt a squared-loss variant of MI (which we call squared-loss MI ; SMI) as an
independence measure and approximate it by estimating the ratio of probability densities
contained in SMI directly without going through density estimation. This approach—
which follows the line of Sugiyama et al. (2008), Kanamori et al. (2009), and Nguyen
et al. (2010)—allows us to avoid a hard task of density estimation. Another practical
advantage of this density-ratio approach is that a natural cross-validation (CV) procedure
is available for hyper-parameter selection. Thus all tuning parameters such as the kernel
width or the regularization parameter can be objectively and systematically optimized
through CV.

From an algorithmic point of view, our density-ratio approach analytically provides a
non-parametric estimator of SMI; furthermore its derivative can also be computed ana-
lytically and these properties are utilized in deriving a new ICA algorithm. The proposed
method is named Least-squares Independent Component Analysis (LICA).

Characteristics of existing and proposed ICA methods are summarized in Table 1,
highlighting the advantage of the proposed LICA approach.

The structure of this paper is as follows. In Section 2, we formulate our estimator of
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Table 1: Summary of existing and proposed ICA methods.

Hyper-parameter selection Distribution

Fast ICA (FICA)
(Hyvärinen, 1999)

Not Necessary Not Free

Natural-gradient ICA (NICA)
(Amari et al., 1996)

Not Necessary Not Free

Kernel ICA (KICA)
(Bach & Jordan, 2002)

Not Available Free

Edgeworth-expansion ICA (EICA)
(Hulle, 2008)

Not Necessary Nearly normal

Least-squares ICA (LICA)
(proposed)

Available Free

SMI. In Section 3, we derive the LICA algorithm based on the SMI estimator. Section 4 is
devoted to numerical experiments where we show that our method properly estimate the
true demixing matrix using toy datasets, and compare the performances of the proposed
and existing methods on artificial and real datasets.

2 SMI Estimation for ICA

In this section, we formulate the ICA problem and introduce our independence measure,
SMI. Then we give an estimation method of SMI and derive an ICA algorithm.

2.1 Problem Formulation

Suppose there is a d-dimensional random signal

x = (x(1), . . . , x(d))⊤

drawn from a distribution with density p(x), where {x(m)}dm=1 are statistically indepen-
dent of each other, and ⊤ denotes the transpose of a matrix or a vector. Thus, p(x) can
be factorized as

p(x) =
d∏

m=1

pm(x
(m)).

We cannot directly observe the source signal x, but only a linearly mixed signal y:

y = (y(1), . . . , y(d))⊤ := Ax,

where A is a d× d invertible matrix called the mixing matrix. The goal of ICA is, given
samples of the mixed signals {yi}ni=1, to obtain a demixing matrix W that recovers the
original source signal x. We denote the demixed signal by z:

z =Wy.
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The ideal solution isW = A−1, but we can only recover the source signals up to permuta-
tion and scaling of components of x due to non-identifiability of the ICA setup (Hyvärinen
et al., 2001).

A direct approach to ICA is to determineW so that components of z are as indepen-
dent as possible. Here, we adopt SMI as the independence measure:

Is(Z
(1), . . . , Z(d)) :=

1

2

∫ (
q(z)

r(z)
− 1

)2

r(z)dz, (1)

where q(z) denotes the joint density of z and r(z) denotes the product of marginal
densities {qm(z(m))}dm=1:

r(z) =
d∏

m=1

qm(z
(m)).

Note that SMI is the Pearson divergence (Pearson, 1900; Paninsky, 2003; Liese & Vajda,
2006; Cichocki et al., 2009) between q(z) and r(z), while ordinary MI is the Kullback-
Leibler divergence (Kullback & Leibler, 1951). Since Is is non-negative and it vanishes if
and only if q(z) = r(z), the degree of independence among {z(m)}dm=1 may be measured
by SMI. Note that Eq.(1) corresponds to the f -divergence (Ali & Silvey, 1966; Csiszár,
1967) between q(x) and r(z) with the squared-loss, while ordinary MI corresponds to the
f -divergence with the log-loss. Thus SMI could be regarded as a natural generalization
of ordinary MI.

Based on the independence detection property of SMI, we try to find the demixing
matrix W that minimizes SMI. Let us denote the demixed samples by

{zi | zi = (z
(1)
i , . . . , z

(d)
i )⊤ :=Wyi}ni=1.

Our key constraint when estimating SMI is that we want to avoid density estimation since
it is a hard task (Vapnik, 1998). Below, we show how this could be accomplished.

2.2 SMI Approximation via Density Ratio Estimation

We approximate SMI via density ratio estimation. Let us denote the ratio of the densities
q(z) and r(z) by

g∗(z) :=
q(z)

r(z)
. (2)

Then SMI can be written as

Is(Z
(1), . . . , Z(d)) =

1

2

∫
(g∗(z)− 1)2 r(z)dz

=
1

2

∫ (
g∗(z)2r(z)− 2g∗(z)r(z) + r(z)

)
dz

=
1

2

∫
(g∗(z)q(z)− 2q(z) + r(z)) dz

=
1

2

∫
g∗(z)q(z)dz − 1

2
. (3)
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Therefore, SMI can be approximated through the estimation of
∫
g∗(z)q(z)dz, the ex-

pectation of g∗(z) over q(z). This can be achieved by taking the sample average of an
estimator of the density ratio g∗(z), say ĝ(z):

Îs =
1

2n

n∑
i=1

ĝ(zi)−
1

2
. (4)

We take the least-squares approach to estimating the density ratio g∗(z):

inf
g

[
1

2

∫ (
g(z)− g∗(z)

)2
r(z)dz

]
= inf

g

[∫ (1
2
g(z)2r(z)− g(z)q(z)

)
dz

]
+ constant,

where infg is taken over all measurable functions. Obviously the optimal solution is the
density ratio g∗. Thus computing Is is now reduced to solving the following optimization
problem:

inf
g

[∫ (1
2
g(z)2r(z)− g(z)q(z)

)
dz

]
. (5)

However, directly solving the problem (5) is not possible due to the following two
reasons. The first reason is that finding the minimizer over all measurable functions is
not tractable in practice since the search space is too vast. To overcome this problem, we
restrict the search space to some linear subspace G:

G = {α⊤φ(z) | α = (α1, . . . , αb)
⊤ ∈ Rb}, (6)

where α is a parameter to be learned from samples, and φ(z) is a basis function vector
such that

φ(z) = (φ1(z), . . . , φb(z))
⊤ ≥ 0b for all z.

0b denotes the b-dimensional vector with all zeros. Note that φ(z) could be dependent
on the samples {zi}ni=1, i.e., kernel models are also allowed. We explain how the basis
functions φ(z) are chosen in Section 2.3.

The second reason why directly solving the problem (5) is not possible is that the
expectations over the true probability densities q(z) and r(z) cannot be computed since
q(z) and r(z) are unknown. To cope with this problem, we approximate the expectations
by their empirical averages—then the optimization problem is reduced to

α̂ := argmin
α∈Rb

[
1

2
α⊤Ĥα− ĥ

⊤
α+ λα⊤Rα

]
, (7)

where we included λα⊤Rα (λ > 0) for avoiding overfitting. λ is called the regularization
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parameter, and R is some positive definite matrix. Ĥ and ĥ are defined as

Ĥ :=
1

nd

n∑
i1,...,id=1

φ(z
(1)
i1
, . . . , z

(d)
id

)φ(z
(1)
i1
, . . . , z

(d)
id

)⊤, (8)

ĥ :=
1

n

n∑
i=1

φ(z
(1)
i , . . . , z

(d)
i ). (9)

Differentiating the objective function in Eq.(7) with respect to α and equating it to zero,
we can obtain an analytic-form solution as

α̂ = (Ĥ + λR)−1ĥ.

Thus, the solution can be computed very efficiently just by solving a system of linear
equations.

Once the density ratio (2) has been estimated, SMI can be approximated by plugging
the estimated density ratio ĝ(z) = α̂⊤φ(z) in Eq.(4):

Îs =
1

2
α̂⊤ĥ− 1

2
. (10)

Note that we may obtain various expressions of SMI using the following identities:∫
g∗(z)2r(z)dz =

∫
g∗(z)q(z)dz,∫

g∗(z)r(z)dz =

∫
q(z)dz = 1.

Ordinary MI based on the Kullback-Leibler divergence can also be estimated similarly
using the density ratio (Suzuki et al., 2008). However, the use of SMI is more advantageous
due to the analytic-form solution, as described in Section 3.

2.3 Design of Basis Functions and Hyper-parameter Selection

As basis functions, we propose to use a Gaussian kernel:

φℓ(z) = exp

(
−∥z − vℓ∥

2

2σ2

)
=

d∏
m=1

exp

(
−(z(m) − v(m)

ℓ )2

2σ2

)
, (11)

where
{vℓ | vℓ = (v

(1)
ℓ , . . . , v

(d)
ℓ )⊤}bℓ=1

are Gaussian centers randomly chosen from {zi}ni=1—more precisely, we set vℓ = zc(ℓ),
where {c(ℓ)}bℓ=1 are randomly chosen from {1, . . . , n} without replacement. An advantage
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of the Gaussian kernel lies in the factorizability in Eq.(11), contributing to reducing the

computational cost of the matrix Ĥ significantly:

Ĥℓ,ℓ′ =
1

nd

d∏
m=1

[
n∑
i=1

exp

(
−(z

(m)
i − v(m)

ℓ )2 + (z
(m)
i − v(m)

ℓ′ )2

2σ2

)]
.

We use the RKHS (Reproducing Kernel Hilbert Space) norm of α⊤φ(z) induced by the
Gaussian kernel as the regularization term α⊤Rα, which is a popular choice in the kernel
method community (Schölkopf & Smola, 2002):

Rℓ,ℓ′ = exp

(
−∥vℓ − vℓ

′∥2

2σ2

)
. (12)

In the experiments, we fix the number of basis functions to

b = min(300, n),

and choose the Gaussian width σ and the regularization parameter λ by CV with grid
search as follows. First, the samples {zi}ni=1 are divided into K disjoint subsets {Zk}Kk=1

of (approximately) the same size (we use K = 5 in the experiments). Then an estimator
α̂Z\Zk

is obtained using Z\Zk (i.e., Z without Zk) and the approximation error for the
hold-out samples Zk is computed:

J
(K-CV)
Zk

=
1

2
α̂⊤

Z\Zk
ĤZk

α̂Z\Zk
− ĥ

⊤
Zk
α̂Z\Zk

,

where the matrix ĤZk
and the vector ĥZk

are defined in the same way as Ĥ and ĥ, but
computed only using Zk. This procedure is repeated for k = 1, . . . , K and its average
J (K-CV) is computed:

J (K-CV) =
1

K

K∑
k=1

J
(K-CV)
Zk

.

For parameter selection, we compute J (K-CV) for all hyper-parameter candidates (the
Gaussian width σ and the regularization parameter λ in the current setting) and choose
the parameter that minimizes J (K-CV). We can show that J (K-CV) is an almost unbiased
estimator of the objective function in Eq.(5), where the ‘almost’-ness comes from the fact
that the number of samples is reduced in the CV procedure due to data splitting (Geisser,
1975; Kohave, 1995).

3 The LICA Algorithms

In this section, we show how the above SMI estimation idea could be employed in the
context of ICA. Here, we derive two algorithms, which we call Least-squares Independent
Component Analysis (LICA), for obtaining a minimizer of Îs with respect to the demixing
matrixW—one is based on a plain gradient method (which we refer to as PG-LICA) and
the other is based on a natural gradient method for whitened samples (which we refer to
as NG-LICA). A MATLAB R⃝ implementation of LICA is available from
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http://www.simplex.t.u-tokyo.ac.jp/~s-taiji/software/LICA/index.html

3.1 Plain Gradient Algorithm: PG-LICA

Based on the plain gradient technique, an update rule of W is given by

W ←−W − ε ∂Îs
∂W

, (13)

where ε (> 0) is the step size. As shown in Appendix, the gradient is given by

∂Îs
∂Wℓ,ℓ′

=
∂ĥ

⊤

∂Wℓ,ℓ′
α̂− 1

2
α̂⊤

(
∂Ĥ

∂Wℓ,ℓ′
+ λ

∂R

∂Wℓ,ℓ′

)
α̂, (14)

where, for uℓ = yc(ℓ) and yi = (y
(1)
i , . . . , y

(d)
i )⊤,

∂ĥℓ
∂Wk,k′

=
1

nσ2

n∑
i=1

(z
(k)
i − v

(k)
ℓ )(u

(k′)
ℓ − y(k

′)
i ) exp

(
−∥zi − vk∥

2

2σ2

)
, (15)

∂Ĥℓ,ℓ′

∂Wk,k′
=

1

nd−1

∏
m̸=k

[
n∑
i=1

exp

(
−(z

(m)
i − v(m)

ℓ )2 + (z
(m)
i − v(m)

ℓ′ )2

2σ2

)]

×

[
1

nσ2

n∑
i=1

(
(z

(k)
i − v

(k)
ℓ )(u

(k′)
ℓ − y(k

′)
i ) + (z

(k)
i − v

(k)
ℓ′ )(u

(k′)
ℓ′ − y

(k′)
i )

)
× exp

(
−(z

(k)
i − v

(k)
ℓ )2 + (z

(k)
i − v

(k)
ℓ′ )2

2σ2

)]
. (16)

For the regularization matrix R defined by Eq.(12), the partial derivative is given by

∂Rℓ,ℓ′

∂Wk,k′
=

1

σ2
(v

(k)
ℓ − v

(k)
ℓ′ )(u

(k′)
ℓ′ − u

(k′)
ℓ ) exp

(
−∥vℓ − vℓ

′∥2

2σ2

)
.

In ICA, scaling of components of z can be arbitrary. This implies that the above
gradient updating rule can lead to a solution with poor scaling, which is not preferable
from a numerical point of view. To avoid possible numerical instability, we normalizeW
at each gradient iteration as

Wk,k′ ←−
Wk,k′√∑d
m=1W

2
k,m

. (17)

In practice, we may iteratively perform line search along the gradient and optimize
the Gaussian width σ and the regularization parameter λ by CV. A pseudo code of the
PG-LICA algorithm is summarized in Figure 1.



Least-squares Independent Component Analysis 9

1. Initialize demixing matrix W and normalize it by Eq.(17).

2. Optimize Gaussian width σ and regularization parameter λ by CV.

3. Compute gradient ∂Îs
∂W

by Eq.(14).

4. Choose step-size ε such that Îs (see Eq.(10)) is minimized (line-search).

5. Update W by Eq.(13).

6. Normalize W by Eq.(17).

7. Repeat 2.–6. until W converges.

Figure 1: The LICA algorithm with plain gradient descent (PG-LICA).

3.2 Natural Gradient Algorithm for Whitened Data: NG-LICA

The second algorithm is based on a natural gradient technique (Amari, 1998).
Suppose the data samples are whitened, i.e., samples {yi}ni=1 are transformed as

yi ←− Ĉ
− 1

2yi, (18)

where Ĉ is the sample covariance matrix:

Ĉ :=
1

n

n∑
i=1

(
yi −

1

n

n∑
j=1

yj

)(
yi −

1

n

n∑
j=1

yj

)⊤

.

Then it can be shown that a demixing matrix which eliminates the second order correlation
is an orthogonal matrix (Hyvärinen et al., 2001). Thus, for whitened data, the search space
of W can be restricted to the orthogonal group O(d) without loss of generality.

The tangent space of O(d) at W is equal to the space of all matrices U such that
W⊤U is skew symmetric, i.e., UW⊤ = −WU⊤. The steepest direction on this tangent
space, which is called the natural gradient, is given as follows (Amari, 1998):

∇Îs(W ) :=
1

2

(
∂Îs
∂W

−W ∂Îs
∂W

⊤

W

)
, (19)

where the canonical metric ⟨G1,G2⟩ = 1
2
tr(G⊤

1G2) is adopted in the tangent space. Then
the geodesic from W in the direction of the natural gradient over O(d) can be expressed
by

W exp
(
tW⊤∇Îs(W )

)
,

where t ∈ R and ‘exp’ denotes the matrix exponential, i.e., for a square matrix D,

exp(D) =
∞∑
k=0

1

k!
Dk.
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1. Whiten the data samples by Eq.(18).

2. Initialize demixing matrix W and normalize it by Eq.(17).

3. Optimize Gaussian width σ and regularization parameter λ by CV.

4. Compute the natural gradient ∇Îs by Eq.(19).

5. Choose step-size t such that Îs (see Eq.(10)) is minimized over the set (20).

6. Update W by Eq.(21).

7. Repeat 3.–6. until W converges.

Figure 2: The LICA algorithm with natural gradient descent (NG-LICA).

Thus when we perform line search along the geodesic in the natural gradient direction,
the minimizer may be searched from the set{

W exp
(
−tW⊤∇Îs(W )

) ∣∣∣ t ≥ 0
}
, (20)

i.e., t is chosen such that Îs (see Eq.(10)) is minimized and W is updated as

W ←−W exp
(
−tW⊤∇Îs(W )

)
. (21)

Geometry and optimization algorithms on more general structure, the Stiefel manifold, is
discussed in more detail in Nishimori and Akaho (2005).

A pseudo code of the NG-LICA algorithm is summarized in Figure 2.

3.3 Remarks

The proposed LICA algorithms can be regarded as an application of the general uncon-
strained least-squares density-ratio estimator proposed by Kanamori et al. (2009) to SMI
in the context of ICA.

The optimization problem (5) can also be obtained following the line of Nguyen et al.
(2010), which addresses a divergence estimation problem utilizing the Legendre-Fenchel
duality. SMI defined by Eq.(1) can be expressed as

Is(Z
(1), . . . , Z(d)) =

∫
1

2

(
q(z)

r(z)

)2

r(z)dz − 1

2
. (22)

If the Legendre-Fenchel duality of the convex function 1
2
x2,

1

2
x2 = sup

y

(
yx− 1

2
y2
)
,



Least-squares Independent Component Analysis 11

is applied to 1
2

(
q(z)
r(z)

)2
in Eq.(22) in a pointwise manner, we have

Is(Z
(1), . . . , Z(d)) = sup

g

[∫ (q(z)
r(z)

g(z)− 1

2
g(z)2

)
r(z)dz − 1

2

]
= − inf

g

[∫ (1
2
g(z)2q(z)− g(z)r(z)

)
dz

]
− 1

2
,

where supg and infg are taken over all measurable functions.
SMI is closely related to the kernel independence measures developed recently (Gretton

et al., 2005a; Gretton et al., 2005b; Fukumizu et al., 2008). In particular, it has been
shown that the NOrmalized Cross-Covariance Operator (NOCCO) proposed in Fukumizu
et al. (2008) is also an estimator of SMI for d = 2. However, there is no reasonable hyper-
parameter selection method for this and all other kernel-based independence measures
(see also Bach & Jordan, 2002 and Fukumizu et al., 2009). This is a crucial limitation in
unsupervised learning scenarios such as ICA. On the other hand, cross-validation can be
applied to our method for hyper-parameter selection, as shown in Section 2.3.

4 Experiments

In this section, we investigate the experimental performance of the proposed method.

4.1 Illustrative Examples

First, we illustrate how the proposed method behaves using the following three 2-
dimensional datasets:

(a) Sub·Sub-Gaussians: p(x) = U(x(1);−0.5, 0.5)U(x(2);−0.5, 0.5),

(b) Super·Super-Gaussians: p(x) = L(x(1); 0, 1)L(x(2); 0, 1),

(c) Sub·Super-Gaussians: p(x) = U(x(1);−0.5, 0.5)L(x(2); 0, 1),

where U(x; a, b) (a, b ∈ R, a < b) denotes the uniform density on [a, b] and L(x;µ, v)
(µ ∈ R, v > 0) denotes the Laplace density with mean µ and variance v. Let the number
of samples be n = 300 and we observe mixed samples {yi}ni=1 through the following mixing
matrix:

A =

(
cos(π/4) sin(π/4)
− sin(π/4) cos(π/4)

)
=

1√
2

(
1 1
−1 1

)
.

The observed samples are plotted in Figure 3. We employed the NG-LICA algorithm
described in Figure 2. Hyper-parameters σ and λ in LICA were chosen by 5-fold CV
from the 10 values in [0.1, 1] at regular intervals and the 10 values in [0.001, 1] at regular
intervals in log scale, respectively. The regularization term was set to the squared RKHS
norm induced by the Gaussian kernel, i.e., we employed R defined by Eq.(12).
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Figure 3: Observed samples (asterisks), true independent directions (dotted lines) and
estimated independent directions (solid lines).
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Figure 4: The value of Îs over iterations.
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Figure 5: The elements of the demixing matrixW over iterations. Solid lines correspond
to W1,1, W1,2, W2,1, and W2,2, respectively. The dotted lines denote the true values.
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The true independent directions as well as the estimated independent directions are
plotted in Figure 3. Figure 4 depicts the value of the estimated SMI (10) over iterations
and Figure 5 depicts the elements of the demixing matrixW over iterations. The results
show that estimated SMI decreases rapidly and good solutions are obtained for all the
datasets. The reason why the estimated SMI in Figure 4 does not decrease monotonically
is that during the natural gradient optimization procedure, the hyper-parameters (λ and
σ) are adjusted by CV (see Figure 2), which possibly causes an increase in the objective
values.

4.2 Performance Comparison

Here we compare our method with some existing methods (KICA, FICA, JADE (Cardoso
& Souloumiac, 1993)) on artificial and real datasets. We used the datasets (a), (b), and
(c) in Section 4.1, the ‘demosig’ dataset available in the FastICA package1 for MATLAB R⃝,
and ‘10halo’, ‘Sergio7’, ‘Speech4’, and ‘c5signals’ datasets available in the ICALAB sig-
nal processing benchmark datasets2 (Cichocki & Amari, 2003). The datasets (a), (b),
(c), ‘demosig’, Sergio7’, and ‘c5signals’ are artificial datasets. The datasets ‘10halo’ and
‘Speech4’ are real datasets. We employed the Amari index (Amari et al., 1996) as the
performance measure (smaller is better):

Amari index :=
1

2d(d− 1)

d∑
m,m′=1

(
|om,m′ |

maxm′′ |om,m′′ |
+

|om,m′ |
maxm′′ |om′′,m′|

)
− 1

d− 1
,

where om,m′ := [ŴA]m,m′ for an estimated demixing matrix Ŵ . We used the publicly
available MATLAB R⃝ codes for KICA3, FICA1 and JADE4, where default parameter set-
tings were used. Hyper-parameters σ and λ in LICA were chosen by 5-fold CV from the
10 values in [0.1, 1] at regular intervals and the 10 values in [0.001, 1] at regular intervals
in log scale, respectively. R was set as Eq.(12).

We randomly generated the mixing matrix A and source signals for artificial datasets,

and computed the Amari index between the true A and Ŵ
−1

for Ŵ estimated by each
method. As training samples, we used the first n samples for Sergio7 and c5signals, and
the n samples between the 1001th and (1000+n)-th interval for 10halo and Speech4, where
we tested n = 200 and 500.

The performance of each method is summarized in Table 2, which depicts the mean
and standard deviation of the Amari index over 50 trials. NG-LICA overall shows good
performance. KICA tends to work reasonably well for datasets (a), (b), (c) and ‘demosig’,
but it performs poorly for the ICALAB datasets; this seems to be caused by an inappro-
priate choice of the Gaussian kernel width and local optima. On the other hand, FICA
and JADE tend to work reasonably well for the ICALAB datasets, but performs poorly

1http://www.cis.hut.fi/projects/ica/fastica
2http://www.bsp.brain.riken.jp/ICALAB/ICALABSignalProc/benchmarks/
3http://www.di.ens.fr/˜fbach/kernel-ica/index.htm
4http://perso.telecom-paristech.fr/ cardoso/guidesepsou.html
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Table 2: Mean and standard deviation of the Amari index (smaller is better) for the
benchmark datasets. The datasets (a), (b), and (c) are taken from Section 4.1. The
‘demosig’ dataset is taken from the FastICA package. The ‘10halo’, ‘Sergio7’, ‘Speech4’,
and ‘c5signals’ datasets are taken from the ICALAB benchmarks datasets. The best
method in terms of the mean Amari index and comparable ones based on the one-sided
t-test at the significance level 1% are indicated by boldface.

dataset n NG-LICA KICA FICA JADE

(a) 200 0.05(0.03) 0.04(0.02) 0.06(0.03) 0.04(0.02)
500 0.03(0.01) 0.03(0.01) 0.03(0.02) 0.02(0.01)

(b) 200 0.06(0.04) 0.12(0.15) 0.16(0.20) 0.15(0.17)
500 0.04(0.03) 0.05(0.04) 0.11(0.12) 0.05(0.04)

(c) 200 0.08(0.05) 0.09(0.06) 0.14(0.11) 0.13(0.09)
500 0.04(0.03) 0.04(0.03) 0.09(0.08) 0.10(0.06)

demosig 200 0.04(0.01) 0.05(0.11) 0.08(0.05) 0.08(0.08)
500 0.02(0.01) 0.04(0.09) 0.04(0.03) 0.04(0.02)

10halo 200 0.29(0.02) 0.38(0.03) 0.33(0.07) 0.36(0.00)
500 0.22(0.02) 0.37(0.03) 0.22(0.03) 0.28(0.00)

Sergio7 200 0.04(0.01) 0.38(0.04) 0.05(0.02) 0.07(0.00)
500 0.05(0.02) 0.37(0.03) 0.04(0.01) 0.04(0.00)

Speech4 200 0.18(0.03) 0.29(0.05) 0.20(0.03) 0.22(0.00)
500 0.07(0.00) 0.10(0.04) 0.10(0.04) 0.06(0.00)

c5signals 200 0.12(0.01) 0.25(0.15) 0.10(0.02) 0.12(0.00)
500 0.06(0.04) 0.07(0.06) 0.04(0.02) 0.07(0.00)

for (a), (b), (c) and ‘demosig’; we conjecture that the contrast functions in FICA and the
fourth-order statistics in JADE did not appropriately catch the non-Gaussianity of the
datasets (a), (b), (c) and ‘demosig’. Overall, the proposed LICA algorithm is shown to
be a promising ICA method.

5 Conclusions

In this paper, we proposed a new ICA method based on a squared-loss variant of mu-
tual information. The proposed method, named least-squares ICA (LICA), has several
preferable properties, e.g., it is distribution-free and hyper-parameter selection by cross-
validation is available.

Similarly to other ICA algorithms, the optimization problem involved in LICA is non-
convex. Thus it is practically very important to develop good heuristics for initialization
and avoiding local optima in the gradient procedures, which is an open research topic to
be investigated. Moreover, although our SMI estimator is analytic, the LICA algorithm is
still computationally rather expensive due to linear equations and cross-validation. Our
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future work will address the computational issue, e.g., by vectorization and parallelization.

Appendix: Derivation of the Gradient of the SMI Es-

timator

Here we show the derivation of the gradient (14) of the SMI estimator (10). Since Îs =
1
2
ĥ

⊤
α̂+ 1

2
(see Eq.(10)), the derivative of Îs with respect to Wk,k′ is given as follows:

∂Îs
∂Wk,k′

=
1

2
ĥ

⊤ ∂α̂

∂Wk,k′
+

1

2
α̂⊤ ∂ĥ

∂Wk,k′
. (23)

Remind that dB(x)−1

dx
= −B(x)−1 dB(x)

dx
B(x)−1 for an arbitrary matrix function B(x).

Then the partial derivative of α̂ = (Ĥ + λR)−1ĥ with respect to Wk,k′ is given by

∂α̂

∂Wk,k′
= −(Ĥ + λR)−1∂(Ĥ + λR)

∂Wk,k′
(Ĥ + λR)−1ĥ+ (Ĥ + λR)−1 ∂ĥ

∂Wk,k′

= −(Ĥ + λR)−1∂(Ĥ + λR)

∂Wk,k′
α̂+ (Ĥ + λR)−1 ∂ĥ

∂Wk,k′
.

Substituting this in Eq.(23), we have

∂Îs
∂Wk,k′

=
1

2
ĥ

⊤
(
−(Ĥ + λR)−1∂(Ĥ + λR)

∂Wk,k′
α̂+ (Ĥ + λR)−1 ∂ĥ

∂Wk,k′

)
+

1

2
α̂⊤ ∂ĥ

∂Wk,k′

=− 1

2
α̂⊤ ∂Ĥ

∂Wk,k′
α̂− λ

2
α̂⊤ ∂R

∂Wk,k′
α̂+ α̂⊤ ∂ĥ

∂Wk,k′
,

which gives Eq.(14).

Acknowledgments

The authors would like to thank Dr. Takafumi Kanamori for his valuable comments.
T.S. was supported in part by the JSPS Research Fellowships for Young Scientists and
Global COE Program “The research and training center for new development in mathe-
matics”, MEXT, Japan. M.S. acknowledges support from SCAT, AOARD, and the JST
PRESTO program.

References

Ali, S. M., & Silvey, S. D. (1966). A general class of coefficients of divergence of one
distribution from another. Journal of the Royal Statistical Society, Series B, 28, 131–
142.



Least-squares Independent Component Analysis 16

Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation, 10,
251–276.

Amari, S., Cichocki, A., & Yang, H. H. (1996). A new learning algorithm for blind signal
separation. Advances in Neural Information Processing Systems (pp. 757–763). MIT
Press.

Bach, F. R., & Jordan, M. I. (2002). Kernel independent component analysis. Journal of
Machine Learning Research, 3, 1–48.

Cardoso, J.-F., & Souloumiac, A. (1993). Blind beamforming for non-Gaussian signals.
Radar and Signal Processing, IEE Proceedings-F, 140, 362–370.

Cichocki, A., & Amari, S. (2003). Adaptive blind signal and image processing: Learning
algorithms and applications. Wiley.

Cichocki, A., Zdunek, R., Phan, A. H., & Amari, S. (2009). Non-negative matrix and
tensor factorizations: Applications to exploratory multi-way data analysis and blind
source separation. New York: Wiley.

Comon, P. (1994). Independent component analysis, a new concept? Signal Processing,
36, 287–314.

Csiszár, I. (1967). Information-type measures of difference of probability distributions
and indirect observation. Studia Scientiarum Mathematicarum Hungarica, 2, 229–318.

Fukumizu, K., Bach, F. R., & Jordan, M. I. (2009). Kernel dimension reduction in
regression. The Annals of Statistics, 37, 1871–1905.

Fukumizu, K., Gretton, A., Sun, X., & Schölkopf, B. (2008). Kernel measures of condi-
tional dependence. Advances in Neural Information Processing Systems 20 (pp. 489–
496). Cambridge, MA: MIT Press.

Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the
American Statistical Association, 70, 320–328.

Gretton, A., Bousquet, O., Smola, A., & Schölkopf, B. (2005a). Measuring statistical
dependence with Hilbert-Schmidt norms. Algorithmic Learning Theory (pp. 63–77).
Berlin: Springer-Verlag.

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., & Schölkopf, B. (2005b). Kernel
methods for measuring independence. Journal of Machine Learning Research, 6, 2075–
2129.

Hulle, M. M. V. (2008). Sequential fixed-point ICA based on mutual information mini-
mization. Neural Computation, 20, 1344–1365.



Least-squares Independent Component Analysis 17

Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component
analysis. IEEE Transactions on Neural Networks, 10, 626–634.

Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis. New
York: Wiley.

Jutten, C., & Herault, J. (1991). Blind separation of sources, part I: An adaptive algorithm
based on neuromimetic architecture. Signal Processing, 24, 1–10.

Kanamori, T., Hido, S., & Sugiyama, M. (2009). A least-squares approach to direct
importance estimation. Journal of Machine Learning Research, 10, 1391–1445.

Kohave, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and
model selection. the Fourteenth International Joint Conference on Artificial Intelligence
(pp. 1137–1143). Morgan Kaufmann.

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathe-
matical Statistics, 22, 79–86.

Liese, F., & Vajda, I. (2006). On divergences and informations in statistics and informa-
tion theory. IEEE Transactions on Information Theory, 52, 4394–4412.

Nguyen, X., Wainwright, M. J., & Jordan, M. I. (2010). Estimating divergence functionals
and the likelihood ratio by convex risk minimization. IEEE Transactions on Information
Theory. to appear.

Nishimori, Y., & Akaho, S. (2005). Learning algorithms utilizing quasi-geodesic flows on
the Stiefel manifold. Neurocomputing, 67, 106–135.

Paninsky, L. (2003). Estimation of entropy and mutual information. Neural Computation,
15, 1191–1253.

Pearson, K. (1900). On the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling. Philosophical Magazine, 50, 157–172.

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge, MA: MIT Press.

Sugiyama, M., Suzuki, T., Nakajima, S., Kashima, H., von Bünau, P., & Kawanabe,
M. (2008). Direct importance estimation for covariate shift adaptation. Annals of the
Institute of Statistical Mathematics, 60, 699–746.

Suzuki, T., Sugiyama, M., Sese, J., & Kanamori, T. (2008). Approximating mutual in-
formation by maximum likelihood density ratio estimation. New Challenges for Feature
Selection in Data Mining and Knowledge Discovery (pp. 5–20).

Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.



1IEICE Transactions on Information and Systems,
vol.E93-D, no.10, pp.2690–2701, 2010.
Revised on January 6, 2011.

Superfast-Trainable Multi-Class Probabilistic Classifier
by Least-Squares Posterior Fitting

Masashi Sugiyama (sugi@cs.titech.ac.jp)
Tokyo Institute of Technology

and
Japan Science and Technology Agency

Abstract

Kernel logistic regression (KLR) is a powerful and flexible classification algorithm,
which possesses an ability to provide the confidence of class prediction. How-
ever, its training—typically carried out by (quasi-)Newton methods—is rather time-
consuming. In this paper, we propose an alternative probabilistic classification
algorithm called Least-Squares Probabilistic Classifier (LSPC). KLR models the
class-posterior probability by the log-linear combination of kernel functions and its
parameters are learned by (regularized) maximum likelihood. In contrast, LSPC
employs the linear combination of kernel functions and its parameters are learned
by regularized least-squares fitting of the true class-posterior probability. Thanks
to this linear regularized least-squares formulation, the solution of LSPC can be
computed analytically just by solving a regularized system of linear equations in a
class-wise manner. Thus LSPC is computationally very efficient and numerically
stable. Through experiments, we show that the computation time of LSPC is faster
than that of KLR by orders of magnitude, with comparable classification accuracy.

Keywords

Probabilistic classification, kernel logistic regression, class-posterior probability, squared-
loss.

1 Introduction

The support vector machine (SVM) [7, 33] is a popular method for classification. Various
computationally efficient algorithms for training SVM with massive datasets have been
proposed so far (see [24, 16, 5, 6, 29, 26, 32, 13, 11, 30, 17, 31, 12] and many other softwares
available online). However, SVM cannot provide the confidence of class prediction since it
only learns the decision boundaries between different classes. To cope with this problem,
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several post-processing methods have been developed for approximately computing the
class-posterior probability [25, 34].

On the other hand, logistic regression (LR) is a classification algorithm that can nat-
urally give the confidence of class prediction since it directly learns the class-posterior
probabilities [15]. Recently, various efficient algorithms for training LR models special-
ized in sparse data have been developed [22, 10].

Applying the kernel trick to LR as done in SVM, one can easily obtain a non-linear
classifier with probabilistic outputs, called kernel logistic regression (KLR). Since the ker-
nel matrix is often dense (e.g., Gaussian kernels), the state-of-the-art LR algorithms for
sparse data are not applicable to KLR. Thus, in order to train KLR classifiers, standard
non-linear optimization techniques such as Newton’s method (more specifically, iteratively
reweighted least-squares) and quasi-Newton methods (for example, the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method) seem to be commonly used in practice [15, 23]. Al-
though the performance of these general-purpose non-linear optimization techniques has
been improved together with the evolution of computer environment in the last decade,
computing the KLR solution is still challenging when the number of training samples is
large. The purpose of this paper is to propose an alternative probabilistic classification
method that can be trained very efficiently.

Our proposed method is called the Least-Squares Probabilistic Classifier (LSPC). In
LSPC, we use a linear combination of Gaussian kernels centered at training points as a
model of class-posterior probabilities. Then we fit this model to the true class-posterior
probability by least-squares1. An advantage of this linear least-squares formulation is
that consistency is guaranteed without taking into account the normalization factor. In
contrast, normalization is essential in the maximum-likelihood LR formulation; otherwise
the likelihood tends to infinity. Thanks to the simplification brought by excluding the
normalization factor from the optimization criterion, we can compute the globally optimal
solution of LSPC analytically just by solving a system of linear equations.

Furthermore, we show that the use of a linear combination of kernel functions in
LSPC allows us to learn the parameters in a class-wise manner. This highly contributes to
further reducing the computational cost particularly in multi-class classification scenarios.
Through experiments, we show that LSPC is computationally much more efficient than
KLR with comparable accuracy.

2 Least-squares Approach to Probabilistic Classifica-

tion

In this section, we formulate the problem of probabilistic classification and give a new
method in the least-squares framework.

1A least-squares formulation has been employed for improving the computational efficiency of SVMs
[29, 26, 13]. However, these approaches deal with deterministic classification, not probabilistic classifica-
tion.
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2.1 Problem Formulation

Let X (⊂ Rd) be the input domain, where d is the dimensionality of the input domain.
Let Y = {1, . . . , c} be the set of labels, where c is the number of classes. Let us consider
a joint probability distribution on X × Y with joint probability density p(x, y). Suppose
that we are given n independent and identically distributed (i.i.d.) paired samples of
input x and output y:

{(xi, yi) ∈ X × Y}ni=1.

The goal is to estimate the class-posterior probability p(y|x) from the samples
{(xi, yi)}ni=1. The class-posterior probability allows us to classify test sample x to class ŷ
with confidence p(ŷ|x):

ŷ := argmax
y

p(y|x).

Let us denote the marginal density of x by p(x) and we assume that it is strictly
positive:

p(x) > 0 for all x ∈ X .
Then, by definition, the class-posterior probability p(y|x) can be expressed as

p(y|x) = p(x, y)

p(x)
. (1)

This expression will be utilized in the derivation of the proposed method below.

2.2 Linear Least-squares Fitting of Class-posterior Probability

Here we introduce our least-squares fitting idea. We begin with the formulation for
learning the class-posterior probability p(y|x) as a function of both x and y, i.e., the
class-posterior probabilities for all classes are learned simultaneously. Then in Section 2.3,
we show that this simultaneous learning problem can be decomposed into independent
class-wise learning problems, which highly contributes to reducing the computational cost.

We model the class-posterior probability p(y|x) by the following linear model:

q(y|x;α) :=
b∑
ℓ=1

αℓϕℓ(x, y) = α
⊤ϕ(x, y),

where ⊤ denotes the transpose of a matrix or a vector,

α = (α1, . . . , αb)
⊤

are parameters to be learned from samples, and

ϕ(x, y) = (ϕ1(x, y), . . . , ϕb(x, y))
⊤

are basis functions such that

ϕ(x, y) ≥ 0b for all (x, y) ∈ X × Y .
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0b denotes the b-dimensional vector with all zeros and the inequality for vectors is applied
in the element-wise manner. We explain how the basis functions ϕ(x, y) are practically
chosen in Section 2.3.

We determine the parameter α in the model q(y|x;α) so that the following squared
error J is minimized:

J(α) :=
1

2

c∑
y=1

∫
(q(y|x;α)− p(y|x))2 p(x)dx

=
1

2

c∑
y=1

∫
q(y|x;α)2p(x)dx−

c∑
y=1

∫
q(y|x;α)p(x, y)dx+ Const.

=
1

2
α⊤Hα− h⊤α+ Const.,

where we used Eq.(1). The b× b matrix H and the b-dimensional vector h are defined as

H :=
c∑

y=1

∫
ϕ(x, y)ϕ(x, y)⊤p(x)dx,

h :=
c∑

y=1

∫
ϕ(x, y)p(x, y)dx.

H and h contain the expectations over unknown densities p(x) and p(x, y), so we ap-
proximate the expectations by sample averages. Then we have

Ĥ :=
1

n

c∑
y=1

n∑
i=1

ϕ(xi, y)ϕ(xi, y)
⊤,

ĥ :=
1

n

n∑
i=1

ϕ(xi, yi).

Now our optimization criterion is formulated as

α̂ := argmin
α∈Rb

[
1

2
α⊤Ĥα− ĥ

⊤
α+ λα⊤α

]
,

where a regularizer λα⊤α (λ > 0) is included for regularization purposes. Taking the
derivative of the above objective function and equating it to zero, we see that the solution
α̂ can be obtained just by solving the following system of linear equations.

(Ĥ + λIb)α = ĥ, (2)

where Ib denotes the b-dimensional identity matrix. Thus, the solution α̂ is given ana-
lytically as

α̂ = (Ĥ + λIb)
−1ĥ.
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In order to assure that the solution q(y|x; α̂) is a conditional probability, we round up
negative outputs to zero [35] and renormalize the solution. Consequently, our final solution
is expressed as

p̂(y|x) = max(0, α̂⊤ϕ(x, y)∑c
y′=1max(0, α̂⊤ϕ(x, y′))

, (3)

We call the above method Least-Squares Probabilistic Classifier (LSPC). LSPC can be
regarded as an application of a density ratio estimation method called the unconstrained
Least-Squares Importance Fitting (uLSIF) [18] to probabilistic classification. Thus all the
theoretical properties of uLSIF such as consistency, the rate of convergence, and numerical
stability [19, 20] may be directly translated into the current context.

2.3 Basis Function Design

A naive choice of basis functions ϕ(x, y) would be a kernel model, i.e., for some kernel
function K ′,

q(y|x;α) =
c∑

y′=1

n∑
ℓ=1

α
(y′)
ℓ K ′(x,xℓ, y, y

′), (4)

which contains cn parameters. For this model, the computational complexity for solving
Eq.(2) is O(c3n3).

Here we propose to separate input x and output y, and use the delta kernel for y (as
in KLR):

q(y|x;α) =
c∑

y′=1

n∑
ℓ=1

α
(y′)
ℓ K(x,xℓ)δy,y′ ,

where K is a kernel function for x and δy,y′ is the Kronecker delta:

δy,y′ =

{
1 if y = y′,

0 otherwise.

This model choice actually allows us to speed up the computation of LSPC significantly
since all the calculations can be carried out separately in a class-wise manner. Indeed,
the above model for class y is expressed as

q(y|x;α) =
n∑
ℓ=1

α
(y)
ℓ K(x,xℓ). (5)

Then the matrix Ĥ becomes block-diagonal, as illustrated in Figure 1(a). Thus we only
need to train a model with n parameters separately c times for each class y, by solving
the following equation:

(Ĥ
′
+ λIn)α

(y) = h̃
(y)
,
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Kernels
for class 1

Kernels
for class 2

Kernels
for class 3Ĥ′ Ĥ′ Ĥ′

(a) Model (5)

Samples
in class 1

Samples
in class 2

Samples
in class 3

Ĥ
(1)

Ĥ
(2)

Ĥ
(3)

(b) Model (7)

Figure 1: Structure of matrix Ĥ for model (5) and model (7). The number of classes is
c = 3. Suppose training samples {(xi, yi)}ni=1 are sorted according to label y. Colored
blocks are non-zero and others are zeros. For model (5) consisting of c sets of n basis

functions, the matrix Ĥ becomes block-diagonal (with common block matrix Ĥ
′
), and

thus training can be carried out separately for each block. For model (7) consisting of c
sets of ny basis functions, the size of the target block is further reduced.

where Ĥ
′
is the n× n matrix and h̃

(y)
is the n-dimensional vector defined as

Ĥ ′
ℓ,ℓ′ :=

1

n

n∑
i=1

K(xi,xℓ)K(xi,xℓ′),

h̃
(y)
ℓ :=

1

n

n∑
i=1

K(xi,xℓ)δy,yi .

Since Ĥ
′
is common to all y, we only need to compute (Ĥ

′
+ λIn)

−1 once. Then the
computational complexity for obtaining the solution is O(n3+ cn2), which is smaller than
the case with general kernel model (4). Thus this approach would be computationally
efficient when the number of classes c is large.

Here, we further propose to reduce the number of kernels in model (5). To this end,
we focus on a kernel function K(x,x′) that is “localized”. Examples of such localized
kernels include the popular Gaussian kernel [28]:

K(x,x′) = exp

(
−∥x− x

′∥2

2σ2

)
. (6)

Our idea is to reduce the number of kernels by locating the kernels only at samples
belonging to the target class:

q(y|x;α) =
ny∑
ℓ=1

α
(y)
ℓ K(x,x

(y)
ℓ ), (7)
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Input

O
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t

Figure 2: Heuristic of reducing the number of basis functions—locate Gaussian kernels
only at the samples of the target class.

where ny is the number of training samples in class y, and {x(y)
i }

ny

i=1 is the training input
samples in class y.

The rationale behind this model simplification is as follows (Figure 2). By definition,
the class-posterior probability p(y|x) takes large values in the regions where samples in
class y are dense; conversely, p(y|x) takes smaller values (i.e., close to zero) in the regions
where samples in class y are sparse. When a non-negative function is approximated by a
Gaussian kernel model, many kernels may be needed in the region where the output of
the target function is large; on the other hand, only a small number of kernels would be
enough in the region where the output of the target function is close to zero. Following
this heuristic, many kernels are allocated in the region where p(y|x) takes large values,
which can be achieved by Eq.(7).

This model simplification allows us to further reduce the computational cost since the
size of the target blocks in matrix Ĥ is further reduced, as illustrated in Figure 1(b). In
order to learn the ny-dimensional parameter vector

α(y) = (α
(y)
1 , . . . , α(y)

ny
)⊤

for each class y, we only need to solve the following system of ny linear equations:

(Ĥ
(y)

+ λIny)α
(y) = ĥ

(y)
, (8)

where Ĥ
(y)

is the ny × ny matrix and ĥ
(y)

is the ny-dimensional vector defined as

Ĥ
(y)
ℓ,ℓ′ :=

1

n

n∑
i=1

K(xi,x
(y)
ℓ )K(xi,x

(y)
ℓ′ ), (9)

ĥ
(y)
ℓ :=

1

n

ny∑
i=1

K(x
(y)
i ,x

(y)
ℓ ).

Let α̂(y) be the solution of Eq.(8). Then our final solution is given by

p̂(y|x) = max(0,
∑ny

ℓ=1 α̂
(y)
ℓ K(x,x

(y)
ℓ ))∑c

y′=1max(0,
∑ny′

ℓ=1 α̂
(y′)
ℓ K(x,x

(y′)
ℓ ))

. (10)
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Input: Labeled training samples {(xi, yi)}ni=1

(equivalently, {x(y)
i }

ny

i=1 for class y = 1, . . . , c),
Gaussian width σ, and regularization parameter λ;

Output: Class-posterior probability p̂(y|x);
for y = 1, . . . , c

Ĥ
(y)
ℓ,ℓ′ ←−

1

n

n∑
i=1

exp

(
−∥xi − x

(y)
ℓ ∥2 + ∥xi − x

(y)
ℓ′ ∥2

2σ2

)
for ℓ, ℓ′ = 1, . . . , ny;

ĥ
(y)
ℓ ←−

1

n

ny∑
i=1

exp

(
−∥x

(y)
i − x

(y)
ℓ ∥2

2σ2

)
for ℓ = 1, . . . , ny;

Solve linear equation (Ĥ
(y)

+ λIny)α
(y) = ĥ

(y)
and obtain α̂(y);

end

p̂(y|x)←−
max

(
0,

ny∑
ℓ=1

α̂
(y)
ℓ exp

(
−∥x− x

(y)
ℓ ∥2

2σ2

))
c∑

y′=1

max

(
0,

ny′∑
ℓ=1

α̂
(y′)
ℓ exp

(
−∥x− x

(y′)
ℓ ∥2

2σ2

)) ;

Figure 3: Pseudo code of LSPC for simplified model (7) with Gaussian kernel (6).

For the simplified model (7), the computational complexity for obtaining the solution
is O(cn2

yn)—when ny = n/c for all y, this is equal to O(c−1n3). Thus this approach is
computationally highly efficient for multi-class problems.

A pseudo code of the simplest LSPC implementation for Gaussian kernels is summa-
rized in Figure 3. Its MATLABR⃝ implementation is available from

http://sugiyama-www.cs.titech.ac.jp/∼sugi/software/LSPC/

3 Experiments

In this section, we experimentally compare the performance of the following classification
methods:

• LSPC: LSPC with model (7).

• LSPC(full): LSPC with model (5).

• KLR: ℓ2-penalized kernel logistic regression with Gaussian kernels. We used a
MATLAB R⃝ implementation included in the ‘minFunc’ package [27], which uses
limited-memory BFGS updates with Shanno-Phua scaling in computing the step
direction and a bracketing line-search for a point satisfying the strong Wolfe condi-
tions to compute the step direction.
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When we fed data to learning algorithms, the input samples were normalized in the
element-wise manner so that each element has mean zero and unit variance. The Gaussian
width σ and the regularization parameter λ for all the methods are chosen based on 2-fold
cross-validation from

σ ∈ { 1
10
m, 1

5
m, 1

2
m, 2

3
m,m, 3

2
m, 2m, 5m, 10m},

λ ∈ {10−2, 10−1.5, 10−1, 10−0.5, 100},

where
m := median({∥xi − xj∥}ni,j=1).

3.1 Illustrative Examples

First, we illustrate the behavior of each method using a toy dataset.
We set the dimension of the input space to d = 2 and the number of classes to c = 3.

We independently drew samples in each class from the following class-conditional sample
densities (see Figure 4):

p(x|y = 1) = N

(
x;

[
−2
0

]
,

[
1 0
0 1

])
,

p(x|y = 2) = N

(
x;

[
2
0

]
,

[
1 0
0 1

])
,

p(x|y = 3) =
1

2
N

(
x;

[
0
−3

]
,

[
4 0
0 1

])
+

1

2
N

(
x;

[
0
2

]
,

[
1 0
0 4

])
,

where N(x;µ,Σ) denotes the Gaussian density with mean µ and covariance matrix Σ.
We set the class-prior probabilities p(y) as

p(y) =

{
1/4 if y = 1, 2,

1/2 if y = 3,

and we set the number of training samples to n = 200. Generated samples are plotted in
Figure 5.

The true class-posterior probabilities p(y|x) (∝ p(x|y)p(y)), their estimates obtained
by LSPC, LSPC(full), and KLR are depicted in Figure 6. The plots show that all the
methods approximate the true class-posterior probabilities well in the training region
(say, [−5, 5]2). However, the output outside the training region is substantially different
in LSPC and KLR. This is induced by the difference of the models—a linear combination
of Gaussian kernels is used in LSPC, while its exponent is used in KLR. Outside the
training region, there is no kernel, and thus a linear combination of Gaussian kernels
takes values close to zero (note that the values are not exactly zero since Gaussian tails
extended from training regions remain everywhere); then typically one of the classes takes
a value close to one, and the others tend to zero outside the training regions. On the other
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Figure 4: Illustrative examples. Class-conditional sample densities p(x|y).
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Figure 5: Illustrative examples. Training samples are plotted with filled symbols. Unfilled
symbols denote the classification results based on the true class-posterior probabilities and
their estimates obtained by LSPC, LSPC(full), and KLR.
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p(y|x), their estimates by LSPC, LSPC(full), and KLR from top to bottom, and y = 1, 2, 3
from left to right.
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hand, KLR outputs values close to one outside the training region since exp(0) = 1; then
they are normalized and thus are reduced to 1/c.

The classification results based on the true class-posterior probabilities and their esti-
mates obtained by LSPC, LSPC(full), and KLR are plotted in Figure 5. This shows that
all the method gave reasonable classification results.

3.2 Performance Comparison

Next, we evaluate the classification accuracy and computation time of each method using
the following multi-class classification datasets taken from the LIBSVM web page [5]:

• mnist: Input dimensionality is 717 and the number of classes is 10.

• usps: Input dimensionality is 256 and the number of classes is 10.

• satimage: Input dimensionality is 36 and the number of classes is 6.

• letter: Input dimensionality is 16 and the number of classes is 26.

We investigated the classification accuracy and computation time of LSPC,
LSPC(full), and KLR. For given n and c, we randomly chose ny = ⌊n/c⌋ training samples
from each class y, where ⌊t⌋ is the largest integer not greater than t. In the first set of
experiments, we fixed the number of classes c to the original number shown above, and
changed the number of training samples as n = 100, 200, 500, 1000, 2000. In the second
set of experiments, we fixed the number of training samples to n = 1000, and changed
the number of classes c—samples only in the first c classes in the dataset are used. The
classification accuracy is evaluated using 100 test samples randomly chosen from each
class. The computation time is measured by the CPU computation time required for
training each classifier when the Gaussian width and the regularization parameter chosen
by cross-validation were used.

The experimental results are summarized in Figure 7 and Figure 8. The left column in
Figure 7 shows that when n is increased, the classification error for all the methods tends
to decrease, and LSPC, LSPC(full), and KLR performed similarly well. The right column
in Figure 7 shows that when n is increased, the computation time tends to grow for all
the methods. LSPC is faster than KLR by two orders of magnitude. The left column
in Figure 8 shows that when c is increased, the classification error tends to increase for
all the methods, and LSPC, LSPC(full), and KLR behaved similarly well. The right
column in Figure 8 shows that when c is increased, the computation time of KLR tends
to grow, while that of LSPC is kept constant or even it tends to slightly decrease. This
happened because the number of samples in each class decreases when c is increased, and
the computation time of LSPC is governed by the number of samples in each class, not
by the total number of samples (see Section 2.3).

Overall, the computation of LSPC was shown to be faster than that of KLR by orders
of magnitude, while LSPC and KLR were shown to be comparable to each other in
terms of the classification accuracy. LSPC and LSPC(full) were shown to possess similar
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Figure 7: Misclassification rate (in percent, left) and computation time (in second, right)
as functions of the number of training samples n. From top to bottom, the graphs
correspond to the ‘mnist’, ‘usps’, ‘satimage’, and ‘letter’ datasets.
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Figure 8: Misclassification rate (in percent, left) and computation time (in second, right)
as functions of the number of classes c. From top to bottom, the graphs correspond to
the ‘mnist’, ‘usps’, ‘satimage’, and ‘letter’ datasets.
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classification performance, and thus a computationally efficient version, LSPC, would be
more preferable in practice.

4 Discussion and Conclusion

Recently, various efficient algorithms for computing the solution of logistic regression have
been developed for high-dimensional sparse data [22, 10]. However, for dense data, using
standard non-linear optimization techniques such as Newton’s method or quasi-Newton
methods seem to be a common choice [15, 23]. The performance of these general-purpose
non-linear optimizers has been improved in the last decade, but computing the solution of
logistic regression for a large number of dense training samples is still a challenge problem.

In this paper, we proposed a simple probabilistic classification algorithm called Least-
Squares Probabilistic Classifier (LSPC). LSPC employs a linear combination of Gaussian
kernels centered at training points for modeling the class-posterior probability and the
parameters are learned by least-squares. Notable advantages of LSPC are that its solution
can be computed analytically just by solving a system of linear equations and training
can be carried out separately in a class-wise manner. In experiments, we showed that
LSPC is faster than kernel logistic regression (KLR) in computation time by two orders
of magnitude, with comparable accuracy.

The computational efficiency of LSPC was brought by the combination of appropriate
model choice and loss function. More specifically, KLR uses a log-linear combination of
kernel functions and its parameters are learned by regularized maximum likelihood. In
this log-linear maximum likelihood formulation, normalization of the model is essential
to avoid the likelihood diverging to infinity. Thus the likelihood function tends to be
complicated and numerically solving the optimization problem may be unavoidable. On
the other hand, in LSPC, we chose a linear combination of Gaussian kernel functions
for modeling the class-posterior probability and its parameters are learned by regularized
least-squares. This combination allowed us to obtain the solution analytically. When
Newton’s method (more specifically, iteratively reweighted least-squares) is used for learn-
ing the KLR model, a system of linear equations needs to be solved in every iteration
until convergence [15]. On the other hand, LSPC requires to solve a system of linear
equations only once.

We chose to separate the kernel for inputs and outputs, and adopted the delta kernel
for outputs (see Eq.(5)). This allowed us to perform the training of LSPC in a class-wise
manner. We showed that this contributes to reducing the training time particularly in
multi-class classification problems. We note that this model choice is essentially the same
as that of KLR2.

We further proposed to reduce the number of kernels when “localized” kernels such
as the Gaussian kernel (6) is used. Through the experimental evaluation in Section 3, we
found that this heuristic model simplification does not degrade the classification accuracy,

2The number of parameters in LSPC with model (5) is cn, while the number of parameters in KLR is
(c− 1)n since the normalization (‘sum-to-one’) constraint is incorporated in the training phase.
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but reduces the computation time.
It is straightforward to show that solutions for all regularization parameter values (i.e.,

the regularization path, see [9, 14]) can be computed efficiently in LSPC. Let us consider

the eigendecomposition of the matrix Ĥ
(y)

(see Eq.(9)):

Ĥ
(y)

=

ny∑
ℓ=1

γℓψℓψ
⊤
ℓ ,

where {ψℓ}
ny

ℓ=1 are the eigenvectors of Ĥ
(y)

associated with the eigenvalues {γℓ}ny

ℓ=1. Then,

the solution α̂(y) can be expressed as

α̂(y) = (Ĥ
(y)

+ λIny)
−1ĥ

(y)
=

ny∑
ℓ=1

ĥ
⊤
ψℓ

γℓ + λ
ψℓ.

Since (ĥ
⊤
ψℓ)ψℓ is common to all λ, we can compute the solution α̂(y) for all λ efficiently

by eigendecomposing the matrix Ĥ
(y)

once in advance. Although eigendecomposition of

Ĥ
(y)

may be computationally slightly more demanding than solving a system of linear
equations of the same size, this approach would be useful, e.g., when computing the
solutions for various values of λ in the cross-validation procedure.

When ny is large, we may further reduce the computational cost and memory space
by using only a subset of kernels.

q(y|x;α) =
by∑
ℓ=1

α
(y)
ℓ K(x, c

(y)
ℓ ),

Ĥ
(y)
ℓ,ℓ′ =

1

n

n∑
i=1

K(xi, c
(y)
ℓ )K(xi, c

(y)
ℓ′ ),

ĥ
(y)
ℓ =

1

n

ny∑
i=1

K(x
(y)
i , c

(y)
ℓ ),

where by is a constant chosen to be smaller than ny and {c(y)ℓ }
by
ℓ=1 is a subset of {x(y)

ℓ }
ny

ℓ=1.
This would be a useful heuristic when a huge number of samples are used for training.

Another option for reducing the computation time when the number of samples is very
large would be the stochastic gradient descent method [1]. That is, starting from some
initial parameter value, gradient descent is carried out only for a randomly chosen single
sample in each iteration. Since our optimization problem is convex, convergence to the
global solution is guaranteed (in a probabilistic sense) by stochastic gradient descent.

We focused on using the delta kernel for class labels (see Section 2.3). We expect that
designing appropriate kernel functions for class labels would be useful for improving the
classification performance, e.g., in the context of multi-task learning [4, 2, 21]. We will
pursue this direction in our future work.
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Abstract

A phenomenon often found in session-to-session transfers of Brain Computer
Interfaces (BCIs) is non-stationarity. It can be caused by fatigue and changing at-
tention level of the user, differing electrode placements, varying impedances, among
other reasons. Covariate shift adaptation is an effective method which can adapt
to the testing sessions without the need for labeling the testing session data. The
method was applied on a BCI Competition III dataset. Results showed that covari-
ate shift adaptation compares favorably with methods used in the BCI competition
in coping with non-stationarities. Specifically, bagging combined with covariate shift
helped to increase stability, when applied to the competition dataset. An online ex-
periment also proved the effectiveness of bagged covariate shift method. Thus, it
can be summarized that covariate shift adaptation is helpful to realize adaptive BCI
systems.

Keywords

brain-computer interface, covariate shift adaptation, bagging



Application of Covariate Shift Adaptation Techniques in Brain Computer Interfaces 2

1 Introduction

A Brain Computer Interface (BCI) is a novel augmentative tool which allows a user
to express his or her will without muscle exertion, provided that the brain signals are
translated properly. However, it may be difficult to recognize the electroencephalography
(EEG) patterns under a fixed algorithm because of high non-stationarity of the EEG
signals. The factors causing non-stationarity include changes in user attention level, user
fatigue, and small differences in electrode position [1]. One notable representation of non-
stationarity is that EEG feature distributions change from one session to another, which
illustrates the non-stationary nature of the BCI signal and provides a rationale for the
design of an adaptive BCI system [2].

Moreover, a good BCI system should be bi-directional in communication with the
user. Besides providing visual/auditory feedback to a user, the system should be able to
adapt to the user, possibly with an adaptive translation algorithm. Several studies have
been conducted on adaptive BCI systems with positive results. Vidaurre et al. adopted
an online updated classifier by adaptive estimation of the information matrix (ADIM) as
well as an adaptive LDA with Kalman filtering [3, 4]. Blumberg et al. developed Adaptive
Linear Discriminant Analysis, updating mean values and covariances continuously in time
for different motor imaginary tasks [5]. However, most of the adaptive methods are based
on supervised learning techniques (e.g., [1, 3, 4]), which need labeled test samples and are,
thus, costly. Covariate shift adaptation is a method which can overcome this shortcoming,
assuming that the input distributions of training and testing sessions are different while
the conditional distribution of output given input remains unchanged [6]. Nevertheless,
the plain covariate shift adaptation technique is rather unstable due to large variances.

To cope with this problem, we propose a novel method which combines covariate shift
adaptation and bagging [7] [8]. Through applications on benchmark data, we demonstrate
the effectiveness of the proposed approach.

2 Methods

In this section, we review baseline methods as well as our proposed approach.

2.1 Feature Extraction by CSP and the Baseline Classifier LDA

Common Spatial Patterns (CSP) is one of the most popular spatial filters of multi-channel
EEG-based BCI in recent years. In contrast to other spatial filters, CSP generates fea-
tures ready to be fed into the classifier. After band-pass filtering the EEG signals in
the frequency range of interest, high or low signal variance reflects strong or attenuated
rhythmic activity, respectively [9]. When classifying EEG into two tasks, CSP maximizes
the variance of one class while minimizing the variance of the other and, thus, reflects
the task specific activation patterns. Some example of CSP applications can be found in
[9, 10, 11, 12].
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Linear Discriminant Analysis (LDA) is a popular classification method in BCI applica-
tion [13]. LDA can be realized by a linear least-squares method if the target labels {yi}Ni=1

corresponding to the feature vectors {xi}Ni=1 for class C1 are set to be −(N1+N2)/N1 and
the target labels of class C2 are set to (N1 + N2)/N2, where N1 and N2 are numbers of
samples of classes C1 and C2, respectively. More specifically, for a linear model

f̂(x; θ) = θ0 +
d∑
i=1

θix
(i),

where x(i) is the ith element of an d-dimensional feature vector x, the parameters θ are
learned by the least-squares method:

min
θ

N∑
i=1

(
yi − f̂(xi; θ)

)2
.

The least-squares solution is given as

θ̂LDA = (XTX)−1XTy,

where

X ≡


1 xT1
1 xT2
...

...
1 xTN

 ,

y = (y1, y2, ..., yN), and X
T denotes the transpose of X.

2.2 Covariate Shift Adaptation by IWLDA

Covariate shift is defined as the situation where the training input points and test input
points follow different distributions while the conditional distribution of output values
given input points is unchanged [6]. A prime example of covariate shift in EEG-based
BCIs occurs when, given different experimental sessions of the same imaginary tasks,
event-related synchronization/desynchronization cortical distributions remain unchanged,
but the means and variances shift in the feature distribution for each task.

Under covariate shift, ordinary Linear Discriminant Analysis (LDA) is not consistent
[14, 6], i.e., even when infinitely many training samples are provided, one cannot obtain the
optimal solution. To cope with this problem, Importance Weighted Linear Discriminant
Analysis (IWLDA) was proposed [15, 6].

IWLDA is an extension of LDA based on the concept of importance sampling. The
importance is defined as the ratio of test and training input densities:

w(x) =
pte(x)

ptr(x)
.



Application of Covariate Shift Adaptation Techniques in Brain Computer Interfaces 4

After the introduction of the importance and a regularizer, the parameters are learned as

min
θ

N∑
i=1

w(xi)
(
yi − f̂(xi; θ)

)2
+ λ∥θ∥2,

where λ (≥ 0) is the regularization parameter. The IWLDA solution is given by

θ̂IWLDA = (XTDX + λI)−1XTDy,

where D is the diagonal matrix with the i-th diagonal element Di,i = w(xi) and I is the
identity matrix. IWLDA is proved to be consistent even in the presence of covariate shift.

2.3 Model Selection by IWCV

The IWLDAmethod contains a regularization parameter λ and this needs to be chosen ap-
propriately for obtaining better performance. To this end, cross-validation is commonly
used, which is known to be an unbiased estimator of the generalization error. How-
ever, ordinary cross-validation is no longer unbiased in the presence of covariate shift;
importance-weighted cross validation (IWCV) is instead unbiased under covariate shift
[6].

More specifically, we first divide the training samples {zi | zi = (xi, yi)}Ni=1 into k
disjoint subsets {Zr}kr=1 (we use k = 5 in the experiments). Then the parameter θ̂r is
obtained using {Zj}j ̸=r (i.e., without Zr) by IWLDA and its mean test error for the
remaining samples Zr is computed:

1

|Zr|
∑

(x,y)∈Zr

w(x)loss
(
f̂(x; θ̂r), y

)
,

where

loss (ŷ, y) =

{
1
2
(1− sign) Classification

(ŷ − y)2 Regression

We repeat this procedure for r = 1, 2, . . . , k and choose the regularization parameter
λ so that the average of the above mean test error over all r is minimized.

2.4 Direct Importance Estimation by KLIEP or uLSIF

For computing the IWLDA solution and performing model selection by IWCV, the values
of the importance are required, which are usually unknown. A naive approach to impor-
tance estimation would be to first estimate the training and testing densities separately
from training input samples {xtri }ntr

i=1 and testing input samples {xtej }nte
=1 , then estimate

the importance by taking the ratio of the estimated densities. However, density estima-
tion is known to be a difficult problem, particularly in high-dimensional cases. Therefore,
this naive approach may not be effective; directly estimating the importance without
estimating the densities would be more promising [15].
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2.4.1 KLIEP

KLIEP (Kullback-Leibler Importance Estimation Procedure) is a method to estimate the
importance directly. First, the importance is modeled as

ŵ(x) =
b∑
l=1

αl exp

(
−∥x− cl∥

2

2σ2

)
,

where {αl}bl=1 are coefficients to be learned (αl ≥ 0 for l = 1, 2, . . . , b), {cl}bl=1 are chosen
randomly from {xtej }nte

=1 , and the number of parameters is set to b = min(100, nte) in the
experiments. The kernel width σ can be optimized by cross validation (see [15]).

Using the above importance model, we can obtain an estimate of the test input density
as

p̂te(x) = ŵ(x)ptr(x).

Based on this expression, {αl}bl=1 are determined so that the Kullback-Leibler divergence
from pte(x) to p̂te(x) is minimized.

KL[pte(x)||p̂te(x)] =

∫
D

pte(x) log
pte(x)

ŵ(x)ptr(x)
dx

=

∫
D

pte(x) log
pte(x)

ptr(x)
dx−

∫
D

pte(x) log ŵ(x)dx.

Based on this, the optimization criterion of KLIEP is given as follows (see [15] for details):

max
{αl}bl=1

nte∑
j=1

log

[
b∑
l=1

αl exp

(
−
∥xtej − cl∥2

2σ2

)]
subject to

ntr∑
i=1

b∑
l=1

αl exp

(
−∥x

tr
i − cl∥2

2σ2

)
= ntr and α1, α2, . . . , αb ≥ 0.

2.4.2 uLSIF

uLSIF (unconstrained Least-Squares Importance Fitting) [16] also estimates the impor-
tance directly. The modeling of the importance is the same as Equation (1), but the
parameters are determined by minimizing the squared error:

J0(α) =
1

2

∫ (
ŵ(x)− pte(x)

ptr(x)

)2

ptr(x)dx

=
1

2

∫
ŵ(x)2ptr(x)dx−

∫
ŵ(x)pte(x)dx+ C,

where C = 1
2

∫
w(x)pte(x)dx is a constant and thus can be ignored. As presented in detail

in [16], the solution of uLSIF is given by

α̂ = max(0b, (Ĥ + λI)−1ĥ),
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where

Ĥl,l′ =
1

ntr

ntr∑
i=1

exp

(
−∥x

tr
i − cl∥2

2σ2

)
exp

(
−∥x

tr
i − cl′∥2

2σ2

)
,

ĥl =
1

nte

nte∑
j=1

exp

(
−∥x

te
i − cl∥2

2σ2

)
.

2.5 Bagged IWLDA

IWLDA combined with KLIEP or uLSIF is shown to perform well under covariate shift.
However, a weakness of this approach is that IWLDA can still produce a large-variance
estimator, causing instability.

To ease this problem, we propose Bagged Importance Weighted Linear Discriminant
Analysis (BIWLDA) which combines bagging (short for ”Bootstrap aggregating”) [7] [18]
and IWLDA (with λ chosen by IWCV) to improve the stability of classifiers.

Bagging is the parallel approach to ensemble construction, which combines indepen-
dently constructed accurate and diverse base learners [17]. The idea behind bagging is
that averaging the predictions will lead to the improvement of classification accuracy,
particularly variance reduction. Since plain covariate-shift adaptation methods tend to
produce high-variance estimators, combining them with bagging would be promising.

More specifically, the proposed BIWLDA procedure is summarized as follows:

1. Randomly take M trials out of the whole N -sized training set, with M = 0.8N ;

2. Train IWLDA (with λ chosen by IWCV) on the re-sampled training set;

3. Repeat 1) and 2) for 30 times;

4. Average the 30 predictors.

The classifiers realized with KLIEP with and without bagging are named BIWLDA1
and IWLDA1 respectively, while the classifiers realized with uLSIF with and without
bagging are named BIWLDA2 and IWLDA2 respectively.

3 Experiments on BCI Competition III Dataset IVc

In this section, we show the experimental results on BCI Competition III Dataset IVc.

3.1 Dataset

Dataset IVc [19] in BCI competition III was recorded from one healthy subject. Visual
cues of 3.5 seconds indicated which of the following 3 motor imageries the subject should
perform: left hand, right foot and tongue. For training, 210 trials were provided with
labels of left hand respectively right hand. 420 test trials were recorded 4 hours after
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Figure 1: Different feature distributions between training and testing sessions in BCI
Competition III Dataset IVc.

the training sessions. The testing sessions were similar to the training sessions, but the
motor imagery had to be performed for 1 second only, compared to the 3.5 seconds in
the training sessions. The other difference was that the class tongue was replaced by the
class relax.

118 EEG channels were measured at positions of the extended international 10-20
system. Signals were band-pass filtered from 0.05 to 200 Hz and then digitized at 1000
Hz with 16 bit accuracy. The data downsampled to 100 Hz was used for analysis.

Since left hand and right foot imagery tasks were both included in the training and
testing sessions, and these two sessions had a long time interval in between, checking
these two classes would reveal whether there is a different feature distribution between
two sessions.

3.2 Investigation of Feature Distributions and Improved Algo-
rithms

It has been shown in many previous studies that filtering must precede CSP in order to
make CSP optimal for the separation of two classes. After plotting and observing the
power spectrum, we decided to apply only bandpass-filtering, from 12 to 14 Hz, though
the competition winner considered a broader bandpass-filtering [18]. Also the competition
winner claimed the optimal dimension of CSP was three, and this result was verified by
us.

By plotting the features extracted by CSP for left hand and right foot imaginary
movements (see Figure 1), it can be seen that a different feature distribution did occur
and that there was a need to shift the classification boundary. Note that, for ease in
visualization, only two dimensions of calculated features, which correspond to the two
most important CSP filters from the training set, were drawn. Figure 2 shows the full
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Figure 2: (a) Flowchart of the first winner; (b) Flowchart of the covariate shift methods.

Table 1: Testing results of LDA, IWLDA, BLDA and BIWLDA.

Method LDA IWLDA1 IWLDA2 BLDA BIWLDA1 BIWLDA2

MSE (mean) 0.246 0.1726 0.1183 0.519 0.0994 0.1165

MSE(std) 0 0.0563 0.0014 0.6023 0.0142 0.0346

(a) MSEs by LDA (baseline), IWLDA, BLDA and BIWLDA.

Method LDA IWLDA1 IWLDA2 BLDA BIWLDA1 BIWLDA2

Accuracy (mean) 0.8429 0.9336 0.9539 0.8115 0.965 0.9546

Accuracy (std) 1.17E-16 0.035 0.0011 0.1322 0.0098 0.0343

(b) Accuracy by LDA (baseline), IWLDA, BLDA and BIWLDA.

two task classification process of the first winner as well as our algorithm. The main
difference lies in the replacement of LDA by IWLDA or BIWLDA.

3.3 Results

Table 1 shows the testing results of all methods with the same data preprocessing. The
means and standard deviations were based on ten iterations of testing. From Table 2(a),
it can be seen that the covariate shift adaptation methods worked very well. Among them,
BIWLDA1 proved to be much more stable than IWLDA1, while IWLDA2 and BIWLDA2
were comparable to each other. However, in real application, normalization of the outputs
is impossible. Furthermore, as an additional evaluation criterion, classification accuracy
was also calculated, as shown in Table 2(b).

It may be not appropriate for us to claim that our methods worked better than the
method of competition winner, since this dataset contained three classes, and our methods
only worked better in separating two of them. However, we think our method solved the
non-stationarity problem caused by session-to-session transfer more efficiently, which can
be revealed from the accuracy listed in table 2(b).

When estimating the importance, parameter b was established as min(100, nte) (see
section 2.4.1), where nte is the number of testing trials. 100 trials were randomly chosen
from the testing set in cases where nte was greater than 100. To determine the effects
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Figure 3: The first 40, 80,..., 280 trials were taken into importance estimation, with
IWLDA1, IWLDA2, BIWLDA1 and BIWLDA2.

brought on by nte, we tested with the first 40, 80,..., 240 and all 280 trials (with training
set unchanged), which may be seen as a pseudo-online importance estimation scenario.
The testing was repeated 10 times with four covariate shift methods, and the averaged
accuracy was plotted in Figure 3. It can be concluded that BIWLDA1 is the most stable
method for different numbers of testing trials taken for importance estimation.

3.4 Online application of bagged covariate shift method

From its application on the benchmark dataset, it is not difficult to see that BIWLDA1
performed well in terms of both accuracy and stability. Moreover, we wished to test
its effectiveness in real online applications and, thus, performed an online experiment
on three healthy female subjects (age 38, 23, 30). For the experiment, we used a G.tec
USBamp system controlled with the software BCI2000 [20]. EEG was recorded using 10
or 15 electrodes positioned at locations FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4,
CP3, CP1, CPz, CP2, and CP4 of the international 10-20 system. For subject 3 the former
10 channels were installed. Data was sampled at 256 Hz and the feedback was updated
every 1 second. Pre-feedback of each trial was set as 2 seconds and the feedback time
length was decided as 3 seconds.

For the online experiment, a ball was displayed traveling at a constant speed from the
left to the right of a screen. Vertical position (distance from the midline of the screen) of
the ball served as feedback, changing according to the classification output of the previous
second. Subjects were asked to imagine moving their left hand or both hands and both
feet to direct the ball downwards and upwards, respectively, and position it to hit a target
bar at the right of the screen.

The experiment was carried out in two parts, separated by one or two days. In the
first part, the subjects were trained to gain familiarity with both offline and online exper-
iments, obtaining trial accuracies above 80%. The algorithm was two most discriminative
features casted by CSP and classified with LDA. In the second part, only online experi-
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Table 2: Mutual information estimated before and after BIWLDA1 updated

Session before BIWLDA1 Sessions after BIWLDA1
MI(old) MI(updated) MI(old) MI(updated)

subject 2 0.3052 0.3527 0.3452 0.3660
subject 3 0.1005 0.1679 0.1511 0.1789

ments were conducted, and the subjects were given a few minutes to practice before the
experiment started. After the first session, BIWLDA1 was run to adjust the LDA coef-
ficients according to the session transfer from the best performed online session recorded
on the previous day. After running BIWLDA1, another two sessions of experiments were
continued. Each online session consisted of 43 trials, and when running BIWLDA1, three
1 second (namely second 2, 3, 4 in one trial) non-overlapped windows were cut from each
trial which means 129 one-second samples were obtained.

The trial accuracy was improved from 72.09% to 80.23% (subject 2) , and from 66%
to 78% (subject 3) after adjustment of LDA coefficients. Results of only two subjects are
presented here because subject 1 reached the same trial accuracy as the previous day at
83%, showing no sign of non-stationarities. In order to verify that these improvements
were not due to the learning process itself, we applied the coefficients before and after
BIWLDA1 adjustment to all the online sessions, analyzing the mutual information [21]
between the targets and the outputs of online data (still 129 samples per session). Using
mutual information as the evaluation criteria is natural because it takes not only the
sign of the output into account but also the amplitude, which, in turn, is used to set the
distance between the ball and vertical midline of the screen.

From Table 2, it can be concluded that these improvements cannot be attributed to
the learning process because in sessions either before or after the BIWLDA1 adjustment,
the updated coefficients generated higher mutual information and with values that are
quite similar. Note in Table 2 that because the session before BIWLDA1 used old coeffi-
cients, the numbers of MI(old) are written in bold, as is MI(updated) in the session after
BIWLDA1 adjustment.

Figure 4 gives a more direct description about the session-to-session transfer of fea-
ture distribution with subject 2. In it the training tasks meant the tasks from the best
performed session on the previous day; the testing tasks referred to those performed in
the first on-line session on the following day, which were classified more accurately after
an adjustment. Although the session-to-session transfer phenomenon was not particularly
obvious with subject 3 as figure 5(a) shows, an adjustment resulted in an increase of accu-
racy shown in figure 5(b). Adjusting the classifier may also help the subject get inspired
with more controllable status, because the online experiment always involves intricate
interaction between feedback and the subject.
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Figure 4: Session to session transfer phenomenon in subject 2 and classification boundary
updating

4 Discussions and Conclusions

In order to test the effectiveness of covariate shift adaptation schemes on a BCI, six
classifiers, namely LDA, IWLDA1 and IWLDA2, BLDA, BIWLDA1 and BIWLDA2,
were applied to Dataset IVc of the BCI Competition III. From the results, we arrive at
the following conclusions.

Lacking detailed descriptions regarding the experimental protocol of the two sessions in
this dataset, we theorize that the non-stationarity originated from three aspects. First, if
electrodes were reinstalled between sessions, slight differences in electrode placement may
have caused shifts of the data in the feature space. If no reinstallation of electrodes was
performed, it is also possible that the electrode gel dried after four hours, causing varying
impedances. Second, the long breaks between runs may also have affected performance.
Although in this dataset a good performance level was maintained, this is a normal
occurrence in BCI experiments. An example was given in [22], where one of the breaks
coincided with the end of a phase with good performance. Therefore, it is possible that,
upon resuming the experiment, the subject was unable to regain the control acquired
in the previous phase. Third, it may have been difficult for the subjects to maintain an
adequate attention level due to fatigue or the learning process itself. Shenoy et al. [22] also
pointed out in their study that the non-stationarity was due to different background EEG
activities brought on by the introduction of visual feedback during the online feedback
session. In our case, however, this cannot be considered to be a reason since the experiment
setup remained unchanged between sessions.

In [22], two possible ways of adaptation were also discussed, namely shifting and
rotating the boundary. The results of our study demonstrated that when there is a need
for shifting or rotation, covariate shift methods are effective in adaptation.

Overall, covariate shift adaptation was shown to be effective for improving the classi-
fication accuracy when the feature distributions differ from one session to another. Es-
pecially when combined with bagging, even a small number of testing trials will result in
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Figure 5: (a) Session to session transfer phenomenon in subject 3, and (b) for a clearer
view, the 2nd session (first session on the following day) was plotted separately

an accurate importance estimation.
It would be promising to integrate the proposed algorithm into a BCI system, where

adaptation would be run at the beginning of every session. For this purpose, we designed
an online experiment and proved the effectiveness of BIWLDA1.

LDA and quadratic discriminant analysis (QDA) are popular classification techniques,
especially when adaptation is involved, due to their effectiveness and simplicity. Examples
of adapted LDA/QDA applications can be found in [3, 4, 5].

Note that most of the existing adaptation studies focused on trial-to-trial adaptation
[3, 4, 5], while we investigated session-to-session adaptation. For subjects, who have little
experience with online experiments and may easily become frustrated with incorrect feed-
back results, the bagged-covariate shift method is helpful in reinforcing their confidence
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by making slight adjustments to the settings of the previous day and, thus, avoiding the
difficulties of offline training each time before an online experiment.
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Abstract

Appropriately designing sampling policies is highly important for obtaining better
control policies in reinforcement learning. In this paper, we first show that the
least-squares policy iteration (LSPI) framework allows us to employ statistical ac-
tive learning methods for linear regression. Then we propose a design method of
good sampling policies for efficient exploration, which is particularly useful when
the sampling cost of immediate rewards is high. The effectiveness of the proposed
method, which we call active policy iteration (API), is demonstrated through sim-
ulations with a batting robot.

Keywords

reinforcement learning, Markov decision process, least-squares policy iteration, ac-
tive learning, batting robot

1 Introduction

Reinforcement learning (RL) is the problem of letting an agent learn intelligent behavior
through trial-and-error interaction with unknown environment (Sutton & Barto, 1998).
More specifically, the agent learns its control policy so that the amount of rewards it will
receive in the future is maximized. Due to its potential possibilities, RL has attracted a
great deal of attention recently in the machine learning community.
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In practical RL tasks, it is often expensive to obtain immediate reward samples while
state-action trajectory samples are readily available. For example, let us consider a robot-
arm control task of hitting a ball by a bat and driving the ball as far away as possible
(see Figure 9). Let us adopt the carry of the ball as the immediate reward. In this
setting, obtaining state-action trajectory samples of the robot arm is easy and relatively
cheap since we just need to control the robot arm and record its state-action trajectories
over time. On the other hand, explicitly computing the carry of the ball from the state-
action samples is hard due to friction and elasticity of links, air resistance, unpredictable
disturbances such a current of air, and so on. Thus, in practice, we may have to put the
robot in open space, let the robot really hit the ball, and measure the carry of the ball
manually. Thus gathering immediate reward samples is much more expensive than the
state-action trajectory samples.

When the sampling cost of immediate rewards is high, it is important to design the
sampling policy appropriately so that a good control policy can be obtained from a small
number of samples. So far, the problem of designing good sampling policies has been ad-
dressed in terms of the trade-off between exploration and exploitation (Kaelbling, Littman,
& Moore, 1996). That is, an RL agent is required to determine either to explore new states
for learning more about unknown environment or to exploit previously acquired knowledge
for obtaining more rewards.

A simple framework of controlling the exploration-exploitation trade-off is the ϵ-greedy
policy (Sutton & Barto, 1998)—with (small) probability ϵ, the agent chooses to explore
unknown environment randomly; otherwise it follows the current control policy for ex-
ploitation. The choice of the parameter ϵ is critical in the ϵ-greedy policy. A standard
and natural idea would be to decrease the probability ϵ as the learning process progresses,
i.e., the environment is actively explored in the beginning and then the agent tends to be
in the exploitation mode later. However, theoretically and practically sound methods for
determining the value of ϵ seem to be still open research topics. Also, when the agent de-
cides to explore unknown environment, merely choosing the next action randomly would
be far from the best possible option.

An alternative strategy called Explicit Explore or Exploit (E3) was proposed in Kearns
& Singh (1998) and Kearns & Singh (2002). The basic idea of E3 is to control the
balance between exploration and exploitation so that the accuracy of environment model
estimation is optimally improved. More specifically, when the number of known states
is small, the agent actively explores unvisited (or less visited) states; as the number of
known states increases, exploitation tends to be prioritized. The E3 strategy is efficiently
realized by an algorithm called R-max (Brafman & Tennenholtz, 2002; Strehl, Diuk,
& Littman, 2007). R-max assigns the maximum ‘value’ to unknown states so that the
unknown states are visited with high probability. An advantage of E3 and R-max is that
the polynomial-time convergence (with respect to the number of states) to a near-optimal
policy is theoretically guaranteed. However, since the algorithms explicitly count the
number of visits at every state, it is not straightforward to extend the idea to continuous
state spaces (Li, Littman, & Mansley, 2008). This is a critical limitation in robotics
applications since state spaces are usually spanned by continuous variables such as joint
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angles and angular velocities.
In this paper, we address the problem of designing sampling policies from a differ-

ent point of view—active learning (AL) for value function approximation. We adopt the
framework of least-squares policy iteration (LSPI) (Lagoudakis & Parr, 2003) and show
that statistical AL methods for linear regression (Fedorov, 1972; Cohn, Ghahramani, &
Jordan, 1996; Wiens, 2000; Kanamori & Shimodaira, 2003; Sugiyama, 2006; Sugiyama
& Nakajima, 2009) can be naturally employed. In the LSPI framework, the state-action
value function is approximated by fitting a linear model with least-squares estimation. A
traditional AL scheme (Fedorov, 1972; Cohn et al., 1996) is designed to find the input
distribution such that the variance of the least-squares estimator is minimized. For justi-
fying the use of the traditional AL scheme, the bias should be guaranteed not to increase
when the variance is reduced, since the expectation of the squared approximation error
of the value function is expressed as the sum of the squared bias and variance. To this
end, we need to assume a strong condition that the linear model used for value function
approximation is correctly specified, i.e., if the parameters are learned optimally, the true
value function can be perfectly approximated.

However, such a correct model assumption may not be fulfilled in practical RL tasks
since the profile of value functions may be highly complicated. To cope with this problem,
a two-stage AL scheme has been proposed in Kanamori & Shimodaira (2003). The use of
the two-stage AL scheme can be theoretically justified even when the model is misspeci-
fied, i.e., the true function is not included in the model. The key idea of this two-stage AL
scheme is to use dummy samples gathered in the first stage for estimating the approxima-
tion error of the value function; then additional samples are chosen based on AL in the
second stage. This two-stage scheme works well when a large number of dummy samples
are used for estimating the approximation error in the first stage. However, due to high
sampling costs in practical RL problems, the practical performance of the two-stage AL
method in the RL scenarios would be limited.

To overcome the weakness of the two-stage AL method, single-shot AL methods have
been developed (Wiens, 2000; Sugiyama, 2006). The use of the single-shot AL methods
can be theoretically justified when the model is approximately correct. Since dummy
samples are not necessary in the single-shot AL methods, good performance is expected
even when the number of samples to be collected is not large. Moreover, the algorithms
of the single-shot methods are very simple and computationally efficient. For this reason,
we adopt the single-shot AL method proposed in Sugiyama (2006), and develop a new
exploration scheme for the LSPI-based RL algorithm. The usefulness of the proposed
approach, which we call active policy iteration (API), is demonstrated through batting-
robot simulations.

The rest of this paper is organized as follows. In Section 2, we formulate the RL prob-
lem using Markov decision processes and review the LSPI framework. Then in Section 3,
we show how a statistical AL method could be employed for optimizing the sampling pol-
icy in the context of value function approximation. In Section 4, we apply our AL strategy
to the LSPI framework and show the entire procedure of the proposed API algorithm.
In Section 5, we demonstrate the effectiveness of API through ball-batting simulations.
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Finally, in Section 6, we conclude by summarizing our contributions and describing future
work.

2 Formulation of Reinforcement Learning Problem

In this section, we formulate the RL problem as a Markov decision problem (MDP)
following Sutton & Barto (1998), and review how it can be solved using a method of
policy iteration following Lagoudakis & Parr (2003).

2.1 Markov Decision Problem

Let us consider an MDP specified by

(S,A, PT, R, γ), (1)

where

• S is a set of states,

• A is a set of actions,

• PT(s
′|s, a) (∈ [0, 1]) is the conditional probability density of the agent’s transition

from state s to next state s′ when action a is taken,

• R(s, a, s′) (∈ R) is a reward for transition from s to s′ by taking action a,

• γ (∈ (0, 1]) is the discount factor for future rewards.

Let π(a|s) (∈ [0, 1]) be a stochastic policy which is a conditional probability density of
taking action a given state s. The state-action value function Qπ(s, a) (∈ R) for policy
π denotes the expectation of the discounted sum of rewards the agent will receive when
taking action a in state s and following policy π thereafter, i.e.,

Qπ(s, a) ≡ E
{sn,an}∞n=2

[
∞∑
n=1

γn−1R(sn, an, sn+1)

∣∣∣∣ s1 = s, a1 = a

]
, (2)

where E{sn,an}∞n=2
denotes the expectation over trajectory {sn, an}∞n=2 following PT(sn+1|sn, an)

and π(an|sn).
The goal of RL is to obtain the policy such that the expectation of the discounted

sum of future rewards is maximized. The optimal policy can be expressed as

π∗(a|s) ≡ δ(a− argmax
a′

Q∗(s, a′)), (3)

where δ(·) is Dirac’s delta function and

Q∗(s, a) ≡ max
π

Qπ(s, a) (4)
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is the optimal state-action value function.
Qπ(s, a) can be expressed by the following recurrent form called the Bellman equation:

Qπ(s, a) = R(s, a) + γ E
PT(s′|s,a)

E
π(a′|s′)

[Qπ(s′, a′)] , ∀s ∈ S, ∀a ∈ A, (5)

where
R(s, a) ≡ E

PT(s′|s,a)
[R(s, a, s′)] (6)

is the expected reward when the agent takes action a in state s, EPT(s′|s,a) denotes the
conditional expectation of s′ over PT(s

′|s, a) given s and a, and Eπ(a′|s′) denotes the con-
ditional expectation of a′ over π(a′|s′) given s′.

2.2 Policy Iteration

Computing the value function Qπ(s, a) is called policy evaluation. Using Qπ(s, a), we may
find a better policy π′(a|s) by ‘softmax’ update:

π′(a|s) ∝ exp(Qπ(s, a)/β), (7)

where β (> 0) determines the randomness of the new policy π′; or by ϵ-greedy update:

π′(a|s) = ϵpu(a) + (1− ϵ)δ(a− argmax
a′

Qπ(s, a′)), (8)

where pu(a) denotes the uniform probability density over actions and ϵ (∈ (0, 1]) deter-
mines how stochastic the new policy π′ is. Updating π based on Qπ(s, a) is called policy
improvement. Repeating policy evaluation and policy improvement, we may find the
optimal policy π∗(a|s). This entire process is called policy iteration (Sutton & Barto,
1998).

2.3 Least-squares Framework for Value Function Approxima-
tion

Although policy iteration is a useful framework for solving an MDP problem, it is compu-
tationally expensive when the number of state-action pairs |S|×|A| is large. Furthermore,
when the state space or action space is continuous, |S| or |A| becomes infinite and therefore
it is no longer possible to directly implement policy iteration. To overcome this problem,
we approximate the state-action value function Qπ(s, a) using the following linear model:

Q̂π(s, a;θ) ≡
B∑
b=1

θbϕb(s, a) = θ
⊤ϕ(s, a), (9)

where
ϕ(s, a) = (ϕ1(s, a), ϕ2(s, a), . . . , ϕB(s, a))

⊤ (10)
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are the fixed linearly independent basis functions, ⊤ denotes the transpose, B is the
number of basis functions, and

θ = (θ1, θ2, . . . , θB)
⊤ (11)

are model parameters to be learned. Note that B is usually chosen to be much smaller
than |S| × |A| for computational efficiency.

For N -step transitions, we ideally want to learn the parameters θ so that the squared
Bellman residual G(θ) is minimized (Lagoudakis & Parr, 2003):

θ∗ ≡ argmin
θ

G(θ), (12)

G(θ) ≡ E
Pπ

[
1

N

N∑
n=1

(θ⊤ψ(sn, an)−R(sn, an))2
]
, (13)

ψ(s, a) ≡ ϕ(s, a)− γ E
PT(s′|s,a)

E
π(a′|s′)

[ϕ(s′, a′)] . (14)

EPπ denotes the expectation over the joint probability density function of an entire tra-
jectory:

Pπ(s1, a1, s2, a2, . . . , sN , aN , sN+1) ≡ PI(s1)
N∏
n=1

PT(sn+1|sn, an)π(an|sn), (15)

where PI(s) denotes the initial-state probability density function.

2.4 Value Function Approximation from Samples

Suppose that roll-out data samples consisting of M episodes with N steps are available
for training purposes. The agent initially starts from randomly selected state s1 follow-
ing the initial-state probability density PI(s) and chooses an action based on sampling
policy π̃(an|sn). Then the agent makes a transition following the transition probabil-
ity PT(sn+1|sn, an) and receives a reward rn(= R(sn, an, sn+1)). This is repeated for N
steps—thus the training dataset Dπ̃ is expressed as

Dπ̃ ≡ {dπ̃m}Mm=1, (16)

where each episodic sample dπ̃m consists of a set of 4-tuple elements as

dπ̃m ≡ {(sπ̃m,n, aπ̃m,n, rπ̃m,n, sπ̃m,n+1)}Nn=1. (17)

We use two types of policies for different purposes: the sampling policy π̃(a|s) for
collecting data samples and the evaluation policy π(a|s) for computing the value function

Q̂π. Minimizing the importance-weighted empirical generalization error Ĝ(θ), we can
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obtain a consistent estimator of θ∗ as follows:

θ̂ ≡ argmin
θ

Ĝ(θ), (18)

Ĝ(θ) ≡ 1

MN

M∑
m=1

N∑
n=1

(θ⊤ψ̂(sπ̃m,n, a
π̃
m,n;Dπ̃)− rπ̃m,n)2wπ̃m,N , (19)

ψ̂(s, a;D) ≡ ϕ(s, a)− γ

|D(s,a)|
∑

s′∈D(s,a)

E
π(a′|s′)

[ϕ(s′, a′)] , (20)

where D(s,a) is a set of 4-tuple elements1 containing state s and action a in the training
data D,

∑
s′∈D(s,a)

denotes the summation over s′ in the set D(s,a), and

wπ̃m,N ≡
∏N

n′=1 π(a
π̃
m,n′|sπ̃m,n′)∏N

n′=1 π̃(a
π̃
m,n′|sπ̃m,n′)

(21)

is called the importance weight (Sutton & Barto, 1998).

It is important to note that consistency of θ̂ can be maintained even if wπ̃m,N is re-

placed by the per-decision importance weight wπ̃m,n (Precup, Sutton, & Singh, 2000), which

is computationally more efficient and stable. θ̂ can be analytically expressed with the ma-
trices L̂ (∈ RB×MN), X̂ (∈ RMN×B), W (∈ RMN×MN), and the vector rπ̃ (∈ RMN) as

θ̂ = L̂rπ̃, (22)

L̂ ≡ (X̂
⊤
WX̂)−1X̂

⊤
W , (23)

rπ̃N(m−1)+n ≡ rπ̃m,n, (24)

X̂N(m−1)+n,b ≡ ψ̂b(s
π̃
m,n, a

π̃
m,n;Dπ̃), (25)

WN(m−1)+n,N(m′−1)+n′ ≡ wπ̃m,nI(m = m′)I(n = n′), (26)

where I(c) denotes the indicator function:

I(c) =

{
1 if the condition c is true,
0 otherwise.

(27)

When the matrix X̂
⊤
WX̂ is ill-conditioned, it is hard to compute its inverse accurately.

To cope with this problem, we may practically employ a regularization scheme (Tikhonov
& Arsenin, 1977; Hoerl & Kennard, 1970; Poggio & Girosi, 1990):

(X̂
⊤
WX̂ + λI)−1, (28)

where I (∈ RB×B) is the identity matrix and λ is a small positive scalar.
1When the state-action space is continuous, the set D(sπ̃m,n,a

π̃
m,n)

contains only a single sample

(sπ̃m,n, a
π̃
m,n, r

π̃
m,n, s

π̃
m,n+1) and then consistency of θ̂ may not be guaranteed. A possible measure for

this would be to use several neighbor samples around (sπ̃m,n, a
π̃
m,n). However, in our experiments, we

decided to use the single-sample approximation since it performed reasonably well.
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3 Efficient Exploration with Active Learning

The accuracy of the estimated value function depends on the training samples collected
following sampling policy π̃(a|s). In this section, we propose a new method for designing
a good sampling policy based on a statistical AL method proposed in Sugiyama (2006).

3.1 Preliminaries

Let us consider a situation where collecting state-action trajectory samples is easy and
cheap, but gathering immediate reward samples is hard and expensive (for example, the
batting robot explained in the introduction). In such a case, immediate reward samples
are too expensive to be used for designing the sampling policy; only state-action trajectory
samples may be used for sampling policy design.

The goal of AL in the current setup is to determine the sampling policy so that
the expected generalization error is minimized. The generalization error is not accessi-
ble in practice since the expected reward function R(s, a) and the transition probability
PT(s

′|s, a) are unknown. Thus, for performing AL, the generalization error needs to be
estimated from samples. A difficulty of estimating the generalization error in the context
of AL is that its estimation needs to be carried out only from state-action trajectory
samples without using immediate reward samples. This means that standard generaliza-
tion error estimation techniques such as cross-validation (Hachiya, Akiyama, Sugiyama,
& Peters, 2009) cannot be employed since they require both state-action and immediate
reward samples. Below, we explain how the generalization error could be estimated under
the AL setup (i.e., without the reward samples).

3.2 Decomposition of Generalization Error

The information we are allowed to use for estimating the generalization error is a set of
roll-out samples without immediate rewards:

Dπ̃ ≡ {dπ̃m}Mm=1, (29)

d
π̃

m ≡ {(sπ̃m,n, aπ̃m,n, sπ̃m,n+1)}Nn=1. (30)

Let us define the deviation of immediate rewards from the mean as

ϵπ̃m,n ≡ rπ̃m,n −R(sπ̃m,n, aπ̃m,n). (31)

Note that ϵπ̃m,n could be regarded as additive noise in the context of least-squares function

fitting. By definition, ϵπ̃m,n has mean zero and its variance generally depends on sπ̃m,n and

aπ̃m,n, i.e., heteroscedastic noise (Bishop, 2006). However, since estimating the variance of

ϵπ̃m,n without using reward samples is not generally possible, we ignore the dependence of

the variance on sπ̃m,n and aπ̃m,n. Let us denote the input-independent common variance by
σ2.
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Now we would like to estimate the generalization error

G(θ̂) ≡ E
Pπ

[
1

N

N∑
n=1

(θ̂
⊤
ψ̂(sn, an;D

π̃
)−R(sn, an))2

]
(32)

from Dπ̃. Its expectation over ‘noise’ can be decomposed as follows (Sugiyama, 2006).

E
ϵπ̃

[
G(θ̂)

]
= Bias + Variance +ModelError, (33)

where Eϵπ̃ denotes the expectation over ‘noise’ {ϵπ̃m,n}
M,N
m=1,n=1. Bias, Variance, and ModelError

are the bias term, the variance term, and the model error term defined by

Bias ≡ E
Pπ

[
1

N

N∑
n=1

{
(E
ϵπ̃

[
θ̂
]
− θ∗)⊤ψ̂(sn, an;D

π̃
)

}2
]
, (34)

Variance ≡ E
Pπ

E
ϵπ̃

[
1

N

N∑
n=1

{
(θ̂ − E

ϵπ̃

[
θ̂
]
)⊤ψ̂(sn, an;D

π̃
)

}2
]
, (35)

ModelError ≡ E
Pπ

[
1

N

N∑
n=1

(θ∗⊤ψ̂(sn, an;D
π̃
)−R(sn, an))2

]
. (36)

θ∗ is the optimal parameter in the model, defined by Eq.(12). Note that the variance
term can be expressed in a compact form as

Variance = σ2tr(UL̂L̂
⊤
), (37)

where the matrix U (∈ RB×B) is defined as

U b,b′ ≡ E
Pπ

[
1

N

N∑
n=1

ψ̂b(sn, an;D
π̃
)ψ̂b′(sn, an;D

π̃
)

]
. (38)

3.3 Estimation of Generalization Error for AL

The model error is constant and thus can be safely ignored in generalization error es-
timation since we are interested in finding a minimizer of the generalization error with
respect to π̃. So we focus on the bias term and the variance term. However, the bias term
includes the unknown optimal parameter θ∗, and thus it may not be possible to estimate
the bias term without using reward samples; similarly, it may not be possible to estimate
the ‘noise’ variance σ2 included in the variance term without using reward samples.

It is known that the bias term is small enough to be neglected when the model is
approximately correct (Sugiyama, 2006), i.e., θ∗⊤ψ̂(s, a) approximately agrees with the
true function R(s, a). Then we have

E
ϵπ̃

[
G(θ̂)

]
−ModelError− Bias ∝ tr(UL̂L̂

⊤
), (39)
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which does not require immediate reward samples for its computation. Since EPπ included

in U is not accessible (see Eq.(38)), we replace U by its consistent estimator Û :

Û ≡ 1

MN

M∑
m=1

N∑
n=1

ψ̂(sπ̃m,n, a
π̃
m,n;D

π̃
)ψ̂(sπ̃m,n, a

π̃
m,n;D

π̃
)⊤wπ̃m,n. (40)

Consequently, we have the following generalization error estimator:

J ≡ tr(ÛL̂L̂
⊤
), (41)

which can be computed only from Dπ̃ and thus can be employed in the AL scenarios. If

it is possible to gather Dπ̃ multiple times, the above J may be computed multiple times
and its average J ′ may be used as a generalization error estimator.

Note that the values of the generalization error estimator J and the true generalization
error G are not directly comparable since irrelevant additive and multiplicative constants
are ignored (see Eq.(39)). We expect that the estimator J has a similar profile to the true
error G as a function of sampling policy π̃ since the purpose of deriving a generalization
error estimator in AL is not to approximate the true generalization error itself, but to
approximate theminimizer of the true generalization error with respect to sampling policy
π̃. We will experimentally investigate this issue in Section 3.5.

3.4 Designing Sampling Policies

Based on the generalization error estimator derived above, we give an algorithm for de-
signing a good sampling policy, which fully makes use of the roll-out samples without
immediate rewards.

1. Prepare K candidates of sampling policy: {π̃k}Kk=1.

2. Collect episodic samples without immediate rewards for each sampling-policy can-

didate: {Dπ̃k}Kk=1.

3. Estimate U using all samples {Dπ̃k}Kk=1 :

Ũ =
1

KMN

K∑
k=1

M∑
m=1

N∑
n=1

ψ̂(sπ̃km,n, a
π̃k
m,n; {D

π̃k}Kk=1)ψ̂(s
π̃k
m,n, a

π̃k
m,n; {D

π̃k}Kk=1)
⊤wπ̃km,n.

(42)

4. Estimate the generalization error for each k:

Jk ≡ tr(ŨL̂
π̃k
L̂
π̃k⊤), (43)

L̂
π̃k ≡ (X̂

π̃k⊤W π̃kX̂
π̃k
)−1X̂

π̃k⊤W π̃k , (44)

X̂
π̃k

N(m−1)+n,b ≡ ψ̂b(s
π̃k
m,n, a

π̃k
m,n; {D

π̃k}Kk=1), (45)

W π̃k
N(m−1)+n,N(m′−1)+n′ ≡ wπ̃km,nI(m = m′)I(n = n′). (46)
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5. (If possible) repeat 2. to 4. several times and calculate the average for each k:
{J ′

k}Kk=1.

6. Determine the sampling policy: π̃AL ≡ argmink J
′
k.

7. Collect training samples with immediate rewards following π̃AL: Dπ̃AL .

8. Learn the value function by LSPI using Dπ̃AL .

3.5 Numerical Examples

Here we illustrate how the above AL method behaves in the 10-state chain-walk environ-
ment shown in Figure 1. The MDP consists of 10 states

S = {s(i)}10i=1 = {1, 2, . . . , 10} (47)

and 2 actions
A = {a(i)}2i=1 = {‘L’, ‘R’}. (48)

The immediate reward function is defined as

R(s, a, s′) ≡ f(s′), (49)

where the profile of the function f(s′) is illustrated in Figure 2.
The transition probability PT(s

′|s, a) is indicated by the numbers attached to the
arrows in Figure 1; for example, PT(s

(2)|s(1), ‘R’) = 0.8 and PT(s
(1)|s(1), ‘R’) = 0.2. Thus

the agent can successfully move to the intended direction with probability 0.8 (indicated
by solid-filled arrows in the figure) and the action fails with probability 0.2 (indicated by
dashed-filled arrows in the figure). The discount factor γ is set to 0.9. We use the 12
basis functions ϕ(s, a) defined as

ϕ2(i−1)+j(s, a) =

I(a = a(j))exp

(
−(s− ci)2

2τ 2

)
for i = 1, 2, . . . , 5 and j = 1, 2

I(a = a(j)) for i = 6 and j = 1, 2,
(50)

where c1 = 1, c2 = 3, c3 = 5, c4 = 7, c5 = 9, and τ = 1.5.
For illustration purposes, we evaluate the selection of sampling policies only in one-

step policy evaluation; evaluation through iterations will be addressed in the next section.
Sampling policies and evaluation policies are constructed as follows. First, we prepare a
deterministic ‘base’ policy π, e.g., ‘LLLLLRRRRR’, where the i-th letter denotes the
action taken at s(i). Let πϵ be the ‘ϵ-greedy’ version of the base policy π, i.e., the intended
action can be successfully chosen with probability 1− ϵ/2 and the other action is chosen
with probability ϵ/2. We perform experiments for three different evaluation policies:

π1 : ‘RRRRRRRRRR’, (51)

π2 : ‘RRLLLLLRRR’, (52)

π3 : ‘LLLLLRRRRR’ (53)
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Figure 1: 10-state chain walk. Filled/unfilled arrows indicate the transitions when taking
action ‘R’/‘L’ and solid/dashed lines indicate the successful/failed transitions.
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Figure 2: Profile of the function f(s′).

with ϵ = 0.1. For each evaluation policy π0.1
i (i = 1, 2, 3), we prepare 10 candidates of the

sampling policy {π̃(k)
i }10k=1, where the k-th sampling policy π̃

(k)
i is defined as π

k/10
i . Note

that π̃
(1)
i is equivalent to the evaluation policy π0.1

i .
For each sampling policy, we calculate the J-value 5 times and take the average.

The numbers of episodes and steps are set to M = 10 and N = 10, respectively. The
initial-state probability PI(s) is set to be uniform. The regularization parameter is set
to λ = 10−3 for avoiding matrix singularity. This experiment is repeated 100 times with
different random seeds and the mean and standard deviation of the true generalization
error and its estimate are evaluated.

The results are depicted in Figure 3 (the true generalization error) and Figure 4 (its
estimate) as functions of the index k of the sampling policies. Note that in these figures,
we ignored irrelevant additive and multiplicative constants when deriving the general-
ization error estimator (see Eq.(39)). Thus, directly comparing the values of the true
generalization error and its estimate is meaningless. The graphs show that the proposed
generalization error estimator overall captures the trend of the true generalization error
well for all three cases.

For active learning purposes, we are interested in choosing the value of k so that the
true generalization error is minimized. Next, we investigate the values of the obtained
generalization error G when k is chosen so that J is minimized (active learning; AL), the
evaluation policy (k = 1) is used for sampling (passive learning; PL), and k is chosen
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Figure 3: The mean and standard deviation of the true generalization error over 100
trials.
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Figure 4: The mean and standard deviation of the estimated generalization error J over
100 trials.
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Figure 5: The box-plots of the values of the obtained generalization error G over 100
trials when k is chosen so that J is minimized (active learning; AL), the evaluation
policy (k = 1) is used for sampling (passive learning; PL), and k is chosen optimally so
that the true generalization error is minimized (optimal; OPT). The box-plot notation
indicates the 5%-quantile, 25%-quantile, 50%-quantile (i.e., median), 75%-quantile, and
95%-quantile from bottom to top.
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optimally so that the true generalization error is minimized (optimal; OPT). Figure 5
depicts the box-plots of the generalization error values for AL, PL, and OPT over 100
trials, where the box-plot notation indicates the 5%-quantile, 25%-quantile, 50%-quantile
(i.e., median), 75%-quantile, and 95%-quantile from bottom to top. The graphs show that
the proposed AL method compares favorably with PL and performs well for reducing the
generalization error.

We will continue the performance evaluation of the proposed AL method through
iterations in Section 4.2.

4 Active Learning in Policy Iteration

In Section 3, we have shown that the unknown generalization error could be accurately
estimated without using immediate reward samples in one-step policy evaluation. In this
section, we extend the idea to the full policy-iteration setup.

4.1 Sample Reuse Policy Iteration with Active Learning

Sample reuse policy iteration (SRPI) (Hachiya et al., 2009) is a recently-proposed frame-
work of off-policy RL (Sutton & Barto, 1998; Precup et al., 2000), which allows us to
reuse previously-collected samples effectively. Let us denote the evaluation policy at the
l-th iteration by πl and the maximum number of iterations by L.

In the policy iteration framework, new data samples Dπl are collected following the
new policy πl for the next policy evaluation step. In ordinary policy-iteration methods,
only the new samples Dπl are used for policy evaluation. Thus the previously-collected
data samples {Dπ1 ,Dπ2 , . . . ,Dπl−1} are not utilized:

π1
E:{Dπ1}→ Q̂π1 I→ π2

E:{Dπ2}→ Q̂π2 I→ π3
E:{Dπ3}→ · · · I→ πL+1, (54)

where ‘E : {D}’ indicates policy evaluation using the data sample D and ‘I’ denotes
policy improvement. On the other hand, in SRPI, all previously-collected data samples
are reused for policy evaluation as

π1
E:{Dπ1}→ Q̂π1 I→ π2

E:{Dπ1 ,Dπ2}→ Q̂π2 I→ π3
E:{Dπ1 ,Dπ2 ,Dπ3}→ · · · I→ πL+1, (55)

where appropriate importance weights are applied to each set of previously-collected sam-
ples in the policy evaluation step.

Here, we apply the AL technique proposed in the previous section to the SRPI frame-
work. More specifically, we optimize the sampling policy at each iteration. Then the
iteration process becomes

π1
E:{Dπ̃1}→ Q̂π1 I→ π2

E:{Dπ̃1 ,Dπ̃2}→ Q̂π2 I→ π3
E:{Dπ̃1 ,Dπ̃2 ,Dπ̃3}→ · · · I→ πL+1. (56)

Thus, we do not gather samples following the current evaluation policy πl, but following
the sampling policy π̃l optimized based on the AL method given in the previous section.
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We call this framework active policy iteration (API). Figure 6 and Figure 7 show the
pseudo code of the API algorithm. Note that the previously-collected samples are used
not only for value function approximation, but also for sampling-policy selection. Thus
API fully makes use of the samples.

4.2 Numerical Examples

Here we illustrate how the API method behaves using the same 10-state chain-walk prob-
lem as Section 3.5 (see Figure 1).

The initial evaluation policy π1 is set as

π1(a|s) ≡ 0.15pu(a) + 0.85I(a = argmax
a′

Q̂0(s, a
′)), (57)

where

Q̂0(s, a) ≡
12∑
b=1

ϕb(s, a). (58)

Policies are updated in the l-th iteration using the ϵ-greedy rule with ϵ = 0.15/l. In the
sampling-policy selection step of the l-th iteration, we prepare the four sampling-policy
candidates

{π̃(1)
l , π̃

(2)
l , π̃

(3)
l , π̃

(4)
l } ≡ {π

0.15/l
l , π

0.15/l+0.15
l , π

0.15/l+0.5
l , π

0.15/l+0.85
l }, (59)

where πl denotes the policy obtained by greedy update using Q̂πl−1 . The number of
iterations to learn the policy is set to L = 7, the number of steps is set to N = 10, and
the number M of episodes is different in each iteration and defined as

{M1,M2,M3,M4,M5,M6,M7}, (60)

where Ml (l = 1, 2, . . . , 7) denotes the number of episodes collected in the l-th itera-
tion. In this experiment, we compare two types of scheduling: {5, 5, 3, 3, 3, 1, 1} and
{3, 3, 3, 3, 3, 3, 3}, which we refer to as the ‘decreasing M ’ strategy and the ‘fixed M ’
strategy, respectively. The J-value calculation is repeated 5 times for AL. In order to
avoid matrix singularity, the regularization parameter is set to λ = 10−3. The perfor-
mance of learned policy πL+1 is measured by the discounted sum of immediate rewards
for test samples {rπL+1

m,n }50m,n=1 (50 episodes with 50 steps collected following πL+1):

Performance =
1

50

50∑
m=1

50∑
n=1

γn−1rπL+1
m,n , (61)

where the discount factor γ is set to 0.9.
We compare the performance of passive learning (PL; the current policy is used as the

sampling policy in each iteration) and the proposed AL method (the best sampling policy
is chosen from the policy candidates prepared in each iteration). We repeat the same
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Algorithm 1: ActivePolicyIteration(ϕ, π1, λ, Z)

//ϕ Basis functions, ϕ(s, a) = (ϕ1(s, a), ϕ2(s, a), . . . , ϕB(s, a))
⊤

//π1 Initial policy, π1(a|s) ∈ [0, 1]
//λ Regularization parameter, λ > 0
//Z The number of J-value calculations to take the average J ′, Z ∈ N

l← 1

for l← 1, 2, . . . , L

do



// Determine sampling policy π̃l by the active learning method

π̃l ← SamplingPolicySelection({Dπ̃l′}l−1
l′=1,ϕ, πl, λ, Z)

// Collect episodic samples using policy π̃l
Dπ̃l ← DataSampling(π̃l)

// Learn the value function Qπl from the samples {Dπ̃l′}ll′=1

A← 1

lMN

l∑
l′=1

M∑
m=1

N∑
n=1

ψ̂(s
π̃l′
m,n, a

π̃l′
m,n; {Dπ̃l′}ll′=1)ψ̂(s

π̃l′
m,n, a

π̃l′
m,n; {Dπ̃l′}ll′=1)

⊤w
π̃l′
m,n

B ← 1

lMN

l∑
l′=1

M∑
m=1

N∑
n=1

ψ̂(s
π̃l′
m,n, a

π̃l′
m,n; {Dπ̃l′}ll′=1)r

π̃l′
m,n

θ̂l ← (A+ λI)−1B

// Update πl using Q̂πl

πl+1 ← PolicyImprovement(θ̂l,ϕ)
return (πL+1)

Figure 6: The pseudo code of ActivePolicyIteration. By the DataSampling function,
episodic samples (M episodes and N steps) are collected using the input policy. By the
PolicyImprovement function, the current policy is updated with policy improvement such
as ϵ-greedy update or softmax update. The pseudo code of SamplingPolicySelection is
shown in Algorithm 2 in Figure 7.
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Algorithm 2: SamplingPolicySelection({Dπ̃l′}l−1
l′=1,ϕ, πl, λ, Z)

//{Dπ̃l′}l−1
l′=1 The previously-collected training samples up to (l − 1)-th iteration

//ϕ Basis functions, ϕ(s, a) = (ϕ1(s, a), ϕ2(s, a), . . . , ϕB(s, a))
⊤

//πl The evaluation policy in the l-th iteration, πl(a|s) (∈ [0, 1])
//λ Regularization parameter, λ (> 0)
//Z The number of J-value calculations to compute the average J ′, Z (∈ N)

for z ← 1, 2, . . . , Z

do



for k ← 1, 2, . . . ,K

do


//Generate sampling policy candidate π̃

(l)
k and collect episodic samples

//without immediate rewards using π̃
(l)
k

Dπ̃
(l)
k ← RewardlessDataSampling(π̃

(l)
k )

//Estimate matrix U

//D0 ≡ {D
π̃
(l)
k }Kk=1 ∪ {D

π̃l′}l−1
l′=1, Π0 ≡ {π̃(l)

k }
K
k=1 ∪ {π̃l′}

l−1
l′=1

Ũ ← 1

(K + l − 1)MN

∑
π∈Π0

M∑
m=1

N∑
n=1

ψ̂(sπm,n, a
π
m,n;D0)ψ̂(s

π
m,n, a

π
m,n;D0)

⊤wπm,n

for k ← 1, 2, . . . ,K

do



//Calculate Jzk
//Πk ≡ {π̃

(l)
k } ∪ {π̃l′}

l−1
l′=1, h

π
m,n ≡ wπm,ne

(N(m−1)+n) (∈ RMN ),

//e(i) (∈ RMN ) is the standard basis vector: e
(i)
j ≡ I(i = j)

A← 1

lMN

∑
π∈Πk

M∑
m=1

N∑
n=1

ψ̂(sπm,n, a
π
m,n;D0)ψ̂(s

π
m,n, a

π
m,n;D0)

⊤wπm,n

B ← 1

lMN

∑
π∈Πk

M∑
m=1

N∑
n=1

ψ̂(sπm,n, a
π
m,n;D0)h

π
m,n

⊤

L̂k ← (A+ λI)−1B

Jzk ← tr(ŨL̂kL̂k
⊤
)

//Choose the policy π̃AL which minimizes J ′
k =

1
Z

∑Z
z=1 J

z
k (k = 1, 2, . . . ,K)

π̃AL ← argminπ′
k
J ′
k

return (π̃AL)

Figure 7: The pseudo code of SamplingPolicySelection. In the function Rewardless-
DataSampling, episodic samples without immediate rewards (M episodes and N steps)
are collected. Previously-collected training samples {Dπ̃l′}ll′=1 are used for the calculation

of matrices Ũ , A, and B in J-value calculation.
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Figure 8: The mean performance over 1000 trials in the 10-state chain-walk experiment.
The dotted lines denote the performance of passive learning (PL) and the solid lines
denote the performance of the proposed active learning (AL) method. The error bars
are omitted for clear visibility. For both the ‘decreasing M ’ and ‘fixed M ’ strategies, the
performance of AL after the 7-th iteration is significantly better than that of PL according
to the two-tailed paired Student t-test at the significance level 1% applied to the error
values at the 7-th iteration.

experiment 1000 times with different random seeds and evaluate the average performance
of each learning method. The results are depicted in Figure 8, showing that the proposed
AL method works better than PL in both types of episode scheduling with statistical
significance by the two-tailed paired Student t-test at the significance level 1% (Henkel,
1979) for the error values obtained at the 7-th iteration. Furthermore, the ‘decreasingM ’
strategy outperforms the ‘fixed M ’ strategy for both PL and AL, showing the usefulness
of the ‘decreasing M ’ strategy.

5 Experiments

Finally, we evaluate the performance of the proposed API method using a ball-batting
robot illustrated in Figure 9, which consists of two links and two joints. The goal of
the ball-batting task is to control the robot arm so that it drives the ball as far away
as possible. The state space S is continuous and consists of angles φ1[rad] (∈ [0, π/4])
and φ2[rad] (∈ [−π/4, π/4]) and angular velocities φ̇1[rad/s] and φ̇2[rad/s]. Thus a state
s (∈ S) is described by a four-dimensional vector:

s = (φ1, φ̇1, φ2, φ̇2)
⊤. (62)
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The action space A is discrete and contains two elements:

A = {a(i)}2i=1 = {(50,−35)⊤, (−50, 10)⊤}, (63)

where the i-th element (i = 1, 2) of each vector corresponds to the torque [N ·m] added
to joint i.

We use the Open Dynamics Engine (‘http://ode.org/’) for physical calculations in-
cluding the update of the angles and angular velocities, and collision detection between
the robot arm, ball, and pin. The simulation time-step is set to 7.5 [ms] and the next
state is observed after 10 time-steps. The action chosen in the current state is kept taken
for 10 time-steps. To make the experiments realistic, we add noise to actions: if action
(f1, f2)

⊤ is taken, the actual torques applied to the joints are f1+ε1 and f2+ ε2, where ε1
and ε2 are drawn independently from the Gaussian distribution with mean 0 and variance
3.

The immediate reward is defined as the carry of the ball. This reward is given only
when the robot arm collides with the ball for the first time at state s′ after taking action
a at current state s. For value function approximation, we use the 110 basis functions
defined as

ϕ2(i−1)+j =

I(a = a(j))exp

(
−∥ s− ci ∥

2

2τ 2

)
for i = 1, 2, . . . , 54 and j = 1, 2,

I(a = a(j)) for i = 55 and j = 1, 2,
(64)

where τ is set to 3π/2 and the Gaussian centers ci (i = 1, 2, . . . , 54) are located on the
regular grid

{0, π/4} × {−π, 0, π} × {−π/4, 0, π/4} × {−π, 0, π}. (65)

We set L = 7 and N = 10. We again compare the ‘decreasing M ’ strategy and the
‘fixed M ’ strategy. The ‘decreasing M ’ strategy is defined by {10, 10, 7, 7, 7, 4, 4} and
the ‘fixed M ’ strategy is defined by {7, 7, 7, 7, 7, 7, 7}. The initial state is always set to
s = (π/4, 0, 0, 0)⊤. The regularization parameter is set to λ = 10−3 and the number of
J-calculations in the AL method is set to 5. The initial evaluation policy π1 is set to the
ϵ-greedy policy defined as

π1(a|s) ≡ 0.15pu(a) + 0.85I(a = argmax
a′

Q̂0(s, a
′)), (66)

Q̂0(s, a) ≡
110∑
b=1

ϕb(s, a). (67)

Policies are updated in the l-th iteration using the ϵ-greedy rule with ϵ = 0.15/l. The
way we prepare sampling-policy candidates is the same as the chain-walk experiment in
Section 4.2.

The discount factor γ is set to 1 and the performance of learned policy πL+1 is measured
by the discounted sum of immediate rewards for test samples {rπL+1

m,n }20,10m=1,n=1 (20 episodes
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with 10 steps collected following πL+1):

Performance =
M∑
m=1

N∑
n=1

rπL+1
m,n . (68)

The experiment is repeated 500 times with different random seeds and the average
performance of each learning method is evaluated. The results are depicted in Figure 10,
showing that the proposed API method outperforms the PL strategy; for the ‘decreasing
M ’ strategy, the performance difference is statistically significant by the two-tailed paired
Student t-test at the significance level 1% for the error values at the 7-th iteration.

Based on the experimental evaluation, we conclude that the proposed sampling-policy
design method, API, is useful for improving the RL performance. Moreover, the ‘decreas-
ing M ’ strategy is shown to be a useful heuristic to further enhance the performance of
API.

6 Conclusions and Future Work

When we cannot afford to collect many training samples due to high sampling costs,
it is crucial to choose the most ‘informative’ samples for efficiently learning the value
function. In this paper, we proposed a new data sampling strategy for reinforcement
learning based on a statistical active learning method proposed by Sugiyama (2006). The
proposed procedure called active policy iteration (API)—which effectively combines the
framework of sample-reuse policy iteration (Hachiya et al., 2009) with active sampling-
policy selection—was shown to perform well in simulations with chain-walk and batting
robot control.

Our active learning strategy is a batch method and does not require previously col-
lected reward samples. However, in the proposed API framework, reward samples are
available from the previous iterations. A naive extension would be to include those pre-
vious samples in the generalization error estimator, for example, following the two-stage
active learning scheme proposed by Kanamori & Shimodaira (2003), in which both the
bias and variance terms are estimated using the labeled samples. However, such a bias-
and-variance approach was shown to perform poorly compared with the variance-only
approach (which we used in the current paper) (Sugiyama, 2006). Thus, developing an
active learning strategy which can effectively make use of previously collected samples is
an important future work.

For the case where the number of episodic samples to be gathered is fixed, we gathered
many samples in earlier iterations, rather than gathering samples evenly in each iteration.
Although this strategy was shown to perform well in the experiments, so far we do not have
strong justification for this heuristic yet. Thus theoretical analysis would be necessary for
understanding the mechanism of this approach and further improving the performance.

In the proposed method, the basis function ψ(s, a) defined by Eq.(14) was approxi-

mated by ψ̂(s, a,D) defined by Eq.(20) using samples. When the state-action space is
continuous, this is theoretically problematic since only a single sample is available for
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Figure 9: A ball-batting robot.
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Figure 10: The mean performance over 500 trials in the ball-batting experiment. The
dotted lines denote the performance of passive learning (PL) and the solid lines denote
the performance of the proposed active learning (AL) method. The error bars are omitted
for clear visibility. For the ‘decreasing M ’ strategy, the performance of AL after the 7-th
iteration is significantly better than that of PL according to the two-tailed paired Student
t-test at the significance level 1% for the error values at the 7-th iteration.

approximation and thus consistency may not be guaranteed. Although we experimentally
confirmed that the single-sample approximation gave reasonably good performance, it is
important to theoretically investigate the convergence issue in the future work.

The R-max strategy (Brafman & Tennenholtz, 2002) is an approach to controlling the
trade-off between exploration and exploitation in the model-based RL framework. The
LSPI R-max method (Strehl et al., 2007; Li, Littman, & Mansley, 2009) is an application
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of the R-max idea to the LSPI framework. It is therefore interesting to investigate the
relation between the LSPI R-max method and the proposed method. Moreover, explor-
ing alternative active learning strategies in the model-based RL formulation would be a
promising research direction in the future.
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Abstract

Over the recent years, a great deal of effort has been made to age estimation from
face images. It has been reported that age can be accurately estimated under
controlled environment such as frontal faces, no expression, and static lighting con-
ditions. However, it is not straightforward to achieve the same accuracy level in
real-world environment because of considerable variations in camera settings, facial
poses, and illumination conditions. In this paper, we apply a recently-proposed
machine learning technique called covariate shift adaptation to alleviating lighting
condition change between laboratory and practical environment. Through real-
world age estimation experiments, we demonstrate the usefulness of our proposed
method.

Keywords

face recognition, age estimation, covariate shift adaptation, lighting condition change,
Kullback-Leibler importance estimation procedure, importance-weighted regular-
ized least-squares

1 Introduction

In recent years, demographic analysis in public places such as shopping malls and stations
is attracting a great deal of attention. Such demographic information is useful for various
purposes including designing effective marketing strategies and targeted advertisement
based on customers’ gender and age. For this reason, a number of approaches have been
explored for age estimation from face images [2, 3], and several databases became publicly
available recently [1, 6].
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The recognition performance of age prediction systems is significantly influenced, e.g.,
by the type of camera, camera calibration, and lighting variations, and the publicly avail-
able databases were mainly collected in semi-controlled environment. For this reason,
existing age prediction systems built upon such databases tend to perform poorly in real-
world environment.

The situation where training and test data are drawn from different distributions is
called covariate shift [8, 11, 12]. In this paper, we formulate the problem of age estimation
in real-world environment as a supervised learning problem under covariate shift. Within
the covariate shift framework, a method called importance-weighted least-squares allows
us to alleviate the influence of environmental changes, by assigning higher weights to data
samples having high test input densities and low training input densities. We demonstrate
through real-world experiments that age estimation based on covariate shift adaptation
achieves higher accuracy than baseline approaches.

2 Proposed Method

In this section, we formulate the problem of age estimation as a supervised learning
problem under covariate shift, and then describe our proposed method.

2.1 Formulation

Throughout this paper, we perform age estimation based not on subjects’ real age, but
on their perceived age. Thus, the ‘true’ age of the subject y is defined as the average
perceived age evaluated by those who observed the subject’s face images (the value is
rounded-off to the nearest integer).

Let us consider a regression problem of estimating the age y∗ of subject x (face fea-
tures). We use the following model for regression.

f(x;α) =
ntr∑
i=1

αiK(x,xtri ), (1)

where α = (α1, . . . , αntr)
⊤ is a model parameter, ⊤ denotes the transpose, and K(x,x′)

is a positive definite kernel [7].
Suppose we are given labeled training data {(xtri , ytri )}ntr

i=1. A standard approach to
learning the model parameter α would be regularized least-squares [4].

min
α

[
1

ntr

ntr∑
i=1

(ytri − f(xtri ;α))2 + λ∥α∥2
]
, (2)

where ∥ · ∥ denotes the Euclidean norm, and λ(> 0) is the regularization parameter to
avoid overfitting.

Below, we explain that merely using regularized least-squares is not appropriate in
real-world perceived age prediction, and show how to cope with this problem.
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Figure 1: The relation between subjects’ perceived age y∗ (horizontal axis) and its stan-
dard deviation (vertical axis)

.

2.2 Incorporating Age Perception Characteristics

Human age perception is known to have heterogeneous characteristics, e.g., it is rare to
misjudge the age of a 5-year-old child as 15 years old, but the age of a 35-year-old person
is often misjudged as 45 years old. In order to quantify this phenomenon, a large-scale
questionnaire survey was carried out in [15]: Each of 72 volunteers were asked to give
age labels y to approximately 1000 face images. Figure 1 depicts the relation between
subjects’ perceived age y∗ and its standard deviation. This shows that the perceived age
deviation tends to be small in younger age brackets and large in older age brackets.

In order to match characteristics of our age prediction system to those of human age
perception, we weight the goodness-of-fit term in Eq.(2) according to the inverse variance
of the perceived age:

min
α

[
1

ntr

ntr∑
i=1

(ytri − f(xtri ;α))2

wage(ytri )
2

+ λ∥α∥2
]
, (3)

where wage(y) is the standard deviation of the perceived age (see Figure 1 again).

2.3 Coping with Lighting Condition Change

When designing age estimation systems, the environment of recording training face images
is often different from the test environment in terms of lighting conditions. Typically,
training data are recorded indoors such as a studio with appropriate illumination. On
the other hand, in real-world environment, lighting conditions have considerable varieties,
e.g., strong sunlight might be cast from a side of faces or there is no enough light. In such
situations, age estimation accuracy is significantly degraded.

Let ptr(x) be the training input density and pte(x) be the test input density. When
these two densities are different, it would be natural to emphasize the influence of train-
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ing samples (xtri , y
tr
i ) which have high similarity to data in the test environment. Such

adjustment can be systematically carried out as follows [8, 11, 12]:

min
α

[
1

ntr

ntr∑
i=1

wimp(x
tr
i )

(ytri − f(xtri ;α))2

wage(ytri )
2

+ λ∥α∥2
]
, (4)

i.e., the goodness-of-fit term in Eq.(3) is weighted according to the importance function:

wimp(x) =
pte(x)

ptr(x)
.

The solution of Eq.(4) can be obtained analytically by

α̂ = (KtrW trKtr + ntrλIntr)
−1KtrW trytr, (5)

where Ktr is the kernel matrix whose (i, i′)-th element is defined by

Ktr
i,i′ = K(xtri ,x

tr
i′ ),

W tr is the ntr-dimensional diagonal matrix with (i, i)-th diagonal element defined by

W tr
i,i =

wimp(x
tr
i )

wage(ytri )
2
,

Intr is the ntr-dimensional identity matrix, and ytr is the ntr-dimensional vector with i-th
element defined by ytri .

When the number of training data ntr is large, we may reduce the number of kernels
in Eq.(1) so that the inverse matrix in Eq.(5) can be computed with limited memory; or
we may compute the solution numerically by a stochastic gradient-decent method.

2.4 Importance-Weighted Cross-Validation (IWCV)

In supervised learning, the choice of models (for example, the basis functions and the
regularization parameter) is crucial for obtaining better performance. Cross-validation
(CV) would be one of the most popular techniques for model selection [9]. CV has
been shown to give an almost unbiased estimate of the generalization error with finite
samples [7], but such almost unbiasedness is no longer fulfilled under covariate shift.

To cope with this problem, a variant of CV called importance-weighted CV (IWCV)
has been proposed [11]. Let us randomly divide the training set

Z = {(xtri , ytri )}ntr
i=1

into T disjoint non-empty subsets {Zt}Tt=1 of (approximately) the same size. Let fZt(x)
be a function learned from Z\Zt (i.e., without Zt). Then the T -fold IWCV (IWCV)
estimate of the generalization error is given by

1

T

T∑
t=1

1

|Zt|
∑

(x,y)∈Zt

wimp(x)

wage(y)2
(fZt(x)− y)2,
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Table 1: Pseudo code of KLIEP. ‘./’ indicates the element-wise division. Inequalities and
the ‘max’ operation for vectors are applied in an element-wise manner.

Input: {xtri }ntr
i=1, {xtej }

nte
j=1

Output: ŵ(x)
Choose {ck}bk=1 as a subset of {xtej }nte

j=1;
Aj,k ← exp

(
−∥xtej − ck∥2/(2γ2)

)
;

bk ← 1
ntr

∑ntr

i=1 exp (−∥xtri − ck∥2/(2γ2));
Initialize β(> 0) and ε (0 < ε≪ 1);
Repeat until convergence

β ← εA⊤(1./Aβ);
β ← β + (1− b⊤β)b/(b⊤b);
β ← max(0,β);
β ← β/(b⊤β);

end

where |Zt| denotes the number of samples in the subset Zt.
It was proved that IWCV gives an almost unbiased estimate of the generalization error

even under covariate shift [11].

2.5 Kullback-Leibler Importance Estimation Procedure
(KLIEP)

In order to compute the solution (5) or performing IWCV, we need the importance weights
wimp(x

tr
i ) = pte(x

tr
i )/ptr(x

tr
i ), which include two probability densities ptr(x) and pte(x).

However, since density estimation is a hard problem, a two-stage approach of first esti-
mating ptr(x) and pte(x) and then taking their ratio may not be reliable. Here we describe
a method called Kullback-Leibler Importance Estimation Procedure (KLIEP) [12], which
allows us to directly estimate the importance function wimp(x) without going through
density estimation of ptr(x) and pte(x).

Let us model wimp(x) using the following model:

ŵimp(x) =
b∑

k=1

βk exp

(
−∥x− ck∥

2

2γ2

)
, (6)

where β = (β1, . . . , βb)
⊤ is a parameter, and {ck}bk=1 is a subset of test input samples

{xtej }nte
j=1．Using the model ŵimp(x), we can estimate the test input density pte(x) by

p̂te(x) = ŵimp(x)ptr(x). (7)

We determine the parameter β in the model (7) so that the Kullback-Leibler divergence
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Figure 2: Examples of face images under different lighting conditions (left: standard
lighting, middle: dark, right: strong light from a side)

from pte to p̂te is minimized:

KL(pte∥p̂te) =
∫
pte(x) log

pte(x)

p̂te(x)
dx

=

∫
pte(x) log

pte(x)

ptr(x)
dx−

∫
pte(x) log ŵimp(x)dx.

We ignore the first term (which is a constant) and impose ŵimp(x) to be non-negative
and normalized. Then we obtain the following convex optimization problem:

max
β

[
nte∑
j=1

log

(
b∑

k=1

βk exp

(
−
∥xtej − ck∥2

2γ2

))]
,

s.t.


βk ≥ 0 for k = 1, . . . , b,

1

ntr

ntr∑
i=1

(
b∑

k=1

βk exp

(
−∥x

tr
i − ck∥2

2γ2

))
= 1.

A pseudo code of KLIEP is described in Table 1. The tuning parameter γ can be
optimized based on likelihood cross-validation (LCV) [12].

3 Empirical Evaluation

In this section, we experimentally evaluate the performance of the proposed method using
in-house face-age datasets.

We use the face images recorded under 17 different lighting conditions: for instance,
average illuminance from above is approximately 1000 lux and 500 lux from the front
in the standard lighting condition, 250 lux from above and 125 lux from the front in
the dark setting, and 190 lux from left and 750 lux from right in another setting (see
Figure 2). Note that these 17 lighting conditions are diverse enough to cover real-world
lighting conditions. Images were recorded as movies with camera at depression angle 15
degrees. The number of subjects is approximately 500 (250 for each gender). We used a
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face detector for localizing the two eye-centers, and then rescaled the image to 64 × 64
pixels. The number of face images in each environment is about 2500 (5 face images ×
500 subjects).

As pre-processing, a neural network feature extractor [14] was used to extract 100-
dimensional features from 64 × 64 face images. The kernel regression model (1) with the
following Gaussian kernel was employed for the extracted 100-dimensional data:

Kσ(x,x
′) = exp

(
−∥x− x

′∥2

2σ2

)
.

We constructed the male/female age prediction models only using male/female data,
assuming that gender classification had been correctly carried out.

We split the 250 subjects into the training set (200 subjects) and the test set (50
subjects). The training set was used for training the kernel regression model (1), and
the test set was used for evaluating its generalization performance. For the test samples
{(xtei , ytei )}nte

i=1 taken from the test set in the environment with strong light from a side,
age-weighted mean square error (WMSE)

WMSE =
1

nte

nte∑
i=1

(ytei − f(xtei ; α̂))2

wage(ytei )
2

was calculated as a performance measure. The training test sets were shuffled 5 times in
such a way that each subject was selected as a test sample once. The final performance
was evaluated based on the average WMSE over the 5 trials.

We compared the performance of the proposed method with the two baseline methods:

Baseline method 1: Training samples were taken only from the standard lighting condi-
tion and age-weighted regularized least-squares (3) was used for training.

Baseline method 2: Training samples were taken from all 17 different lighting conditions
and age-weighted regularized least-squares (3) was used for training.

The importance weights were not used in these baseline methods. The Gaussian width
σ and the regularization parameter λ were determined based on 4-fold CV over WMSE,
i.e., the training set was further divided into a training part (150 subjects) and a validation
part (50 subjects).

In the proposed method, training samples were taken from all 17 different lighting
conditions (which is the same as the baseline method 2). The importance weights were
estimated by KLIEP using the training samples and additional unlabeled test samples;
the hyper-parameter γ in KLIEP was determined based on 2-fold LCV [12]. We then
computed the average importance score over different samples for each lighting condition
and used the average importance score for training the regression model. The Gaussian
width σ and the regularization parameter λ in the regression model were determined
based on 4-fold IWCV [11].
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Table 2: The test performance measured by WMSE.
Male Female

Baseline method 1 2.83 6.51
Baseline method 2 2.64 4.40
Proposed method 2.54 3.90

Table 2 summarizes the experimental results, showing that, for both male and female
data, the baseline method 2 is better than the baseline method 1 and the proposed method
is better than the baseline method 2. This illustrates the effectiveness of the proposed
method. Note that WMSE for female subjects is substantially larger than that for male
subjects. The reason for this would be that female subjects tend to have more divergence
such as short/long hair and with/without makeup, which makes prediction harder [16].

4 Summary and Future Works

Lighting condition change is one of the critical causes of performance degradation in age
prediction from face images. In this paper, we proposed to employ a machine learning
technique called covariate shift adaptation for alleviating the influence of lighting condition
change. We demonstrated the effectiveness of our proposed method through real-world
perceived age prediction experiments.

In the experiments in Section 3, test samples were collected from a particular lighting
condition, and samples from the same lighting condition were also included in the training
set. Although we believe this setup to be practical, it would be interesting to evaluate
the performance of the proposed method when no overlap in the lighting conditions exists
between training and test data.

In principle, the covariate shift framework allows us to incorporate not only lighting
condition change, but also various types of environment change such as face pose variation
and camera setting change. In our future work, we will investigate whether the proposed
approach is still useful in such challenging scenarios.

Recently, novel approaches to density ratio estimation for high-dimensional problems
have been explored [5, 10, 17, 13]. In our future work, we would like to incorporating
these new ideas into our framework of perceived age estimation, and see how the prediction
performance can be further improved.
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